首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Y Sato 《Human cell》1998,11(4):207-214
  相似文献   

2.
Matrix metalloproteinase-mediated degradation of extracellular matrix is a crucial event for invasion and metastasis of malignant cells. The expressions of matrix metalloproteinases (MMPs) are regulated by different cytokines and growth factors. VEGF, a potent angiogenic cytokine, induces invasion of ovarian cancer cells through activation of MMPs. Here, we demonstrate that invasion and scattering in SKOV-3 cells were induced by VEGF through the activation of p38 MAPK and PI3K/AKT pathways. VEGF induced the expression of MMP-2, MMP-9, and MMP-13 and hence regulated the metastasis of SKOV-3 ovarian cancer cells, and the activities of these MMPs were reduced after inhibition of PI3K/AKT and p38 MAPK pathways. Interestingly, VEGF induced expression of ETS-1 factor, an important trans-regulator of different MMP genes. ETS-1 bound to both MMP-9 and MMP-13 promoters. Furthermore, VEGF acted through its receptor to perform the said functions. In addition, VEGF-induced MMP-9 and MMP-13 expression and in vitro cell invasion were significantly reduced after knockdown of ETS-1 gene. Again, VEGF-induced MMP-9 and MMP-13 promoter activities were down-regulated in ETS-1 siRNA-transfected cells. VEGF enriched ETS-1 in the nuclear fraction in a dose-dependent manner. VEGF-induced expression of ETS-1 and its nuclear localization were blocked by specific inhibitors of the PI3K and p38 MAPK pathways. Therefore, based on these observations, it is hypothesized that the activation of PI3K/AKT and p38 MAPK by VEGF results in ETS-1 gene expression, which activates MMP-9 and MMP-13, leading to the invasion and scattering of SKOV-3 cells. The study provides a mechanistic insight into the prometastatic functions of VEGF-induced expression of relevant MMPs.  相似文献   

3.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-β secretion, particularly TGF-β2. However, it is largely unclear whether and how TGF-β2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-β2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-β2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-β2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-β2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-β2 expression in RPE cells under pathologic conditions.  相似文献   

4.
Intra- and extracellular signaling by endothelial neuregulin-1   总被引:1,自引:0,他引:1  
Suppression of tumor growth by inhibition of ErbB receptor signaling is well documented. However, relatively little is known about the ErbB signaling system in the regulation of angiogenesis, a process necessary for tumor growth. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is expressed by vascular endothelial cells (EC) and promotes endothelial recruitment of vascular smooth muscle cells (SMC). To assess whether other members of the EGF-family regulate angiogenesis, the expression of 10 EGF-like growth factors in primary ECs and SMCs was analyzed. In addition to HB-EGF, neuregulin-1 (NRG-1) was expressed in ECs in vitro and in vivo. Endothelial NRG-1 was constitutively processed to soluble extracellular and intracellular signaling fragments, and its expression was induced by hypoxia. NRG-1 was angiogenic in vivo in mouse corneal pocket and chicken chorioallantoic membrane (CAM) assays. However, consistent with the lack of NRG-1 receptors in several primary EC lines, NRG-1 did not directly stimulate cellular responses in cultured ECs. In contrast, NRG-1 promoted EC responses in vitro and angiogenesis in CAM in vivo by mechanisms dependent on VEGF-A and VEGFR-2. These results indicate that NRG-1 is expressed by ECs and regulates angiogenesis by mechanisms involving paracrine up-regulation of VEGF-A.  相似文献   

5.
As a link between exercise and metabolism, irisin is assumed to be involved in increased total body energy expenditure, reduced body weight, and increased insulin sensitivity. Although our recent evidence supported the contribution of irisin to vascular endothelial cell (ECs) proliferation and apoptosis, further research of irisin involvement in the angiogenesis of ECs was not conclusive. In the current study, it was found that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) angiogenesis via increasing migration and tube formation, and attenuated chemically-induced intersegmental vessel (ISV) angiogenic impairment in transgenic TG (fli1: GFP) zebrafish. It was further demonstrated that expression of matrix metalloproteinase (MMP) 2 and 9 were also up-regulated in endothelial cells. We also found that irisin activated extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling by using U0126 decreased the pro-migration and pro-angiogenic effect of irisin on HUVEC. Also, U0126 inhibited the elevated expression of MMP-2 and MMP-9 when they were treated with irisin. In summary, these findings provided direct evidence that irisin may play a pivotal role in maintaining endothelium homeostasis by promoting endothelial cell angiogenesis via the ERK signaling pathway.  相似文献   

6.
7.
The redox state of the endothelial cells plays a key role in the regulation of the angiogenic process. The modulation of the redox state of endothelial cells (ECs) could be a viable target to alter angiogenic response. In the present work, we synthesized a redox modulator by caging 5-hydroxy 2-methyl 1, 4-napthoquinone (Plumbagin) on silver nano framework (PCSN) for tunable reactive oxygen species (ROS) inductive property and tested its role in ECs during angiogenic response in physiological and stimulated conditions. In physiological conditions, the redox modulators induced the angiogenic response by establishing ECs cell–cell contact in tube formation model, chorio allontoic membrane, and aortic ring model. The molecular mechanism of angiogenic response was induced by vascular endothelial growth factor receptor 2 (VEGFR2)/p42-mitogen-activated protein kinase signaling pathway. Under stimulation, by mimicking tumor angiogenic conditions it induced cytotoxicity by generation of excessive ROS and inhibited the angiogenic response by the loss of spatiotemporal regulation of matrix metalloproteases, which prevents the tubular network formation in ECs and poly-ADP ribose modification of VEGF. The mechanism of opposing effects of PCSN was due to modulation of PKM2 enzyme activity, which increased the EC sensitivity to ROS and inhibited EC survival in stimulated condition. In normal conditions, the endogenous reactive states of NOX4 enzyme helped the EC survival. The results indicated that a threshold ROS level exists in ECs that promote angiogenesis and any significant enhancement in its level by redox modulator inhibits angiogenesis. The study provides the cues for the development of redox-based therapeutic molecules to cure the disease-associated aberrant angiogenesis.  相似文献   

8.
Induction of SPARC by VEGF in human vascular endothelial cells   总被引:7,自引:0,他引:7  
SPARC/osteonectin/BM-40 is a matricellular protein that is thought to be involved in angiogenesis and endothelial barrier function. Previously, we have detected high levels of SPARC expression in endothelial cells (ECs) adjacent to carcinomas of kidney and tongue. Although SPARC-derived peptide showed an angiogenic effect, intact SPARC itself inhibited the mitogenic activity of vascular endothelial growth factor (VEGF) for ECs by the inhibiting phosphorylation of flt-1 (VEGF receptor 1) and subsequent ERK activation. Thus, the role of SPARC in tumor angiogenesis, stimulation or inhibition, is still unclear. To clarify the role of SPARC in tumor growth and progression, we determined the effect of VEGF on the expression of SPARC in human microvascular EC line, HMEC-1, and human umbilical vein ECs. VEGF increased the levels of SPARC protein and steady-state levels of SPARC mRNA in serum-starved HMEC-1 cells. Inhibitors (SB202190 and SB203580) of p38, a mitogen-activated protein (MAP) kinase, attenuated VEGF-stimulated SPARC production in ECs. Since intact SPARC inhibits phosphorylation ERK MAP kinase in VEGF signaling, it was suggested that SPARC plays a dual role in the VEGF functions, tumor angiogenesis, and extravasation of tumors mediated by the increased permeability of endothelial barrier function.  相似文献   

9.
10.
Endothelial cells (ECs) are quiescent in normal blood vessels, but undergo rapid bursts of proliferation after vascular injury, hypoxia or induced by powerful angiogenic cytokines like fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). Deregulated proliferation of ECs facilitates angiogenic processes and promotes tumor growth. In dividing cells, cell cycle-associated protein kinases, which are referred as cyclin-dependent kinases (cdks), regulate proliferation, differentiation, senescence, and apoptosis. Cyclin-dependent kinase-5 (cdk5) is expressed in neuronal cells and plays an important role in neurite outgrowth, of neuronal migration and neurogenesis, its functions in non-neuronal cells are unclear. Here, we show for the first time that the cdk5 is expressed at high levels in proliferating bovine aortic endothelial (BAE) cells, by contrast insignificant low levels of cdk5 expression in quiescent BAE cells. In addition, bFGF up-regulates cdk5 expression in a dose-dependent fashion. Interestingly, temporal expression data suggests that cdk5 expression is very low between 24-48 h, but high level of cdk5 expression was detected during 60-72 h. This later time corresponds to the time of completion of one cell cycle (doubling of cell population) of BAE cell culture. Angiostatin (AS), a powerful inhibitor of angiogenesis inhibits ECs proliferation in dose-dependent manner with concomitant down-regulation of cdk5 expression. The role of cdk5 in ECs, proliferation and apoptosis was confirmed by selective inhibition of cdk5 expression by the purine derivative roscovitine, which inhibits bFGF-stimulated BAE cells proliferation and induces apoptosis in dose-specific manner. By contrast, the roscovitine analog olomoucine, which is a specific inhibitor of cdk4, but not of cdk5 failed to affect ECs proliferation and apoptosis. These data suggest for the first time that neuron specific protein cdk5 may have significant role in the regulation of ECs proliferation, apoptosis, and angiogenesis and extends beyond its role in neurogenesis.  相似文献   

11.
In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth.  相似文献   

12.
Chemerin acting via its distinct G protein-coupled receptor CMKLR1 (ChemR23), is a novel adipokine, circulating levels of which are raised in inflammatory states. Chemerin shows strong correlation with various facets of the metabolic syndrome; these states are associated with an increased incidence of cardiovascular disease (CVD) and dysregulated angiogenesis. We therefore, investigated the regulation of ChemR23 by pro-inflammatory cytokines and assessed the angiogenic potential of chemerin in human endothelial cells (EC). We have demonstrated the novel presence of ChemR23 in human ECs and its significant up-regulation (< 0.001) by pro-inflammatory cytokines, TNF-α, IL-1β and IL-6. More importantly, chemerin was potently angiogenic, as assessed by conducting functional in-vitro angiogenic assays; chemerin also dose-dependently induced gelatinolytic (MMP-2 & MMP-9) activity of ECs (< 0.001). Furthermore, chemerin dose-dependently activated PI3K/Akt and MAPKs pathways (< 0.01), key angiogenic and cell survival cascades. Our data provide the first evidence of chemerin-induced endothelial angiogenesis and MMP production and activity.  相似文献   

13.
14.
15.
Endothelial nitric oxide synthase (ecNOS) derived nitric oxide (NO) is a key contributor to the angiogenic process. By augmenting angiogenesis NO could potentially promote tumor progression. The object of this study was to determine how knockdown of ecNOS affects endothelial NO production and the angiogenic response in endothelial cells. EOMA cells derived from a spontaneously arising murine hemangioendothelioma were genetically manipulated to stably express siRNA targeting ecNOS. Knockdown of ecNOS in different stably transfected EOMA cell lines was demonstrated by quantitative RT-PCR, Western blot and ecNOS specific ELISA. An EOMA cell line with near complete knockdown of ecNOS exhibited dramatically altered morphology and changes in the expression of mRNAs encoding proteins involved in angiogenesis. This cell line exhibited a 4-fold increase in proliferation in vitro, altered tube formation in matrigel and formed tumors in mice more rapidly than the parental cells. In contrast, a cell line in which ecNOS protein levels were reduced only 5-fold did not show changes in proliferation rate, tube formation or tumor growth. These results suggest that ecNOS derived nitric oxide reduces the growth of hemangioendothelioma derived tumors, and underscore the importance of careful consideration of the tumor type when selecting modulation of nitric oxide signaling as a treatment strategy.  相似文献   

16.
Lysophosphatidic acid (LPA) has been found to mediate myeloid differentiation, stimulate osteogenesis, alter cell proliferation and migration, and inhibit apoptosis in chondrocytes. The effect of LPA on the angiogenic capability of chondrocytes is not clear. This study aimed to investigate its effect on the angiogenic capability of human chondrocytes and the underlying mechanism of these effects. Human chondrocyte cell line, CHON-001, commercialized human chondrocytes (HC) derived from normal human articular cartilage, and human vascular endothelial cells (HUVECs) were used as cell models in this study. The angiogenic capability of chondrocytes was determined by capillary tube formation, monolayer permeability, cell migration, and cell proliferation. An angiogenesis protein array kit was used to evaluate the secretion of angiogenic factors in conditioned medium. Angiogenin, insulin-like growth factor-binding protein 1 (IGFBP-1), interleukin (IL)-8, monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase (MMP)-9, and vascular endothelial growth factor (VEGF) mRNA and protein expressions were evaluated by Q-RT-PCR and EIA, respectively. LPA receptor (LPAR) expression was determined by RT-PCR. Signaling pathways were clarified using inhibitors, Western blot analysis, and reporter assays. The LPA treatment promoted the angiogenic capability of CHON-001 cells and HC, resulting in enhanced HUVEC capillary tube formation, monolayer permeability, migration, and cell growth. Angiogenin, IGFBP-1, IL-8, MCP-1, MMP-9, and VEGF mRNA and protein expressions were significantly enhanced in LPA-treated chondrocytes. LPA2, 3, 4 and 6 were expressed in CHON-001 and HC cells. Pretreatment with the Gi/o type G protein inhibitor, pertussis toxin (PTX), and the NF-kB inhibitor, PDTC, significantly inhibited LPA-induced angiogenin, IGFBP-1, IL-8, MCP-1, MMP-9, and VEGF expressions in chondrocytes. The PTX pretreatment also inhibited LPA-mediated NF-kB activation, suggesting the presence of active Gi/NF-kB signaling in CHON-001 and HC cells. The effect of LPA on the angiogenesis-inducing capacity of chondrocytes may be due to the increased angiogenesis factor expression via the Gi/NF-kB signaling pathway.  相似文献   

17.
18.
Angiogenesis inhibition by transdominant mutant Ets-1   总被引:8,自引:0,他引:8  
  相似文献   

19.
Progalanin is released from the small cell lung carcinoma line SBC-3A and converted to its active form by plasmin. To elucidate the role of progalanin activation in the extracellular compartment, matrix metalloproteinase (MMP) activity was studied in SBC-3A cells treated with progalanin siRNA, and angiogenesis was measured in tumor tissue originating from SBC-3A cell transplantation into mice. Progalanin siRNA caused downregulation of progalanin expression for approximately 8 days. MMP activity and angiogenesis were reduced in tumors induced by transplantation of progalanin siRNA-treated SBC-3A cells. In contrast, MMP-9 and MMP-2 activity and angiogenesis increased in tumors originating from progalanin siRNA-treated SBC-3A cells in the presence of galanin and progalanin. Furthermore, injection of tranexamic acid, a plasmin inhibitor, more markedly reduced MMP-9 and MMP-2 activity and angiogenesis in tumors originating from progalanin siRNA-treated SBC-3A cells and in tumor tissue originating from progalanin siRNA-treated SBC-3A cells in the presence of progalanin. The reduction of MMP-9 and MMP-2 activity with tranexamic acid was restored by galanin, but not by progalanin. Moreover, tranexamic acid reduced angiogenesis in control siRNA-treated SBC-3A cells. These results suggest that the activation of progalanin by plasmin in the extracellular compartment was involved in MMP-9 and MMP-2 activation and in angiogenesis in tumor tissue.  相似文献   

20.
A coordinated interaction between fibroblast growth factors (FGFs) and matrix metalloproteinases (MMPs) is implicated in migration of microvascular endothelial cells (ECs), an early stage of angiogenesis. Specifically, we investigated microvascular ECs migration in vitro, which can be initiated by the overexpression of a secretory form of the angiogenic fibroblast growth factor-1 (FGF-1) and mediated through the enzymatic activity of matrix metalloproteinase-1 (MMP-1). MMP-1 is a member of the MMP family with a propensity for degradation of interstitial type I collagen. We stably overexpressed a chimeric FGF-1 construct composed of the FGF-4 signal-peptide gene, linked in-frame to the FGF-1 coding frame gene (sp-FGF-1), in cultured postcapillary venular ECs. The presence of the biologically active form of FGF-1 was readily detected in the conditioned medium of ECs transfected with sp-FGF-1 construct as demonstrated by DNA synthesis assay. The sp-FGF-1-, but not the plasmid vector alone-transfected ECs, exhibited an altered morphology as demonstrated by their conversion from a classic cobblestone form to a fibroblastlike shape that featured prominent neuritelike extensions. Addition of the anti-FGF receptor 1 antibody (FGFR1 Ab) reverted the transformed phenotype of sp-FGF-1 transfectants. This suggests that the resulting phenotypic transformation in sp-FGF-1 transfectants requires an uninterrupted interaction between the FGF-1 ligand and its receptor. We studied migration of cells through matrices of either highly pure collagen I or reconstituted basement membrane (matrigel) and found that sp-FGF-1-transfected cells migrated two times and six times faster than the vector control transfectants in the respective matrices. We further demonstrated that the enhanced migration rate of sp-FGF-1-transfected EC coincided with the induction of their MMP-1 mRNA level and increased enzymatic activity. The enhanced migratory activity of sp-FGF-1 could be blocked with a selective inhibitor of MMP-1. These results suggest that the multipotent FGF-1 plays a key role in the early stages of angiogenesis, by mediating MMP-1 proteolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号