首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant problem.  相似文献   

2.
Insect resistance management in GM crops: past, present and future   总被引:33,自引:0,他引:33  
Transgenic plants expressing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) were first commercialized in 1996 amid concern from some scientists, regulators and environmentalists that the widespread use of Bt crops would inevitably lead to resistance and the loss of a 'public good,' specifically, the susceptibility of insect pests to Bt proteins. Eight years later, Bt corn and cotton have been grown on a cumulative area >80 million ha worldwide. Despite dire predictions to the contrary, resistance to a Bt crop has yet to be documented, suggesting that resistance management strategies have been effective thus far. However, current strategies to delay resistance remain far from ideal. Eight years without resistance provides a timely opportunity for researchers, regulators and industry to reassess the risk of resistance and the most effective strategies to preserve Bt and other novel insect-resistant crops in development.  相似文献   

3.
Ranavirus: past, present and future   总被引:1,自引:0,他引:1  
Emerging infectious diseases are a significant threat to global biodiversity. While historically overlooked, a group of iridoviruses in the genus Ranavirus has been responsible for die-offs in captive and wild amphibian, reptile and fish populations around the globe over the past two decades. In order to share contemporary information on ranaviruses and identify critical research directions, the First International Symposium on Ranaviruses was held in July 2011 in Minneapolis, MN, USA. Twenty-three scientists and veterinarians from nine countries examined the ecology and evolution of ranavirus-host interactions, potential reservoirs, transmission dynamics, as well as immunological and histopathological responses to infection. In addition, speakers discussed possible mechanisms for die-offs, and conservation strategies to control outbreaks.  相似文献   

4.
5.
6.
Chitosomes: past, present and future   总被引:4,自引:0,他引:4  
José Ruiz-Herrera's discovery that chitin microfibrils could be made by a fungal extract paved the way for elucidating the intracellular location of chitin synthetase. In collaboration with Charles Bracker, chitosomes were identified as the major reservoir of chitin synthetase in fungi. Unique in size, buoyant density, and membrane thickness, chitosomes were found in a wide range of fungi. Their reversible dissociation into 16S subunits is another unique property of chitosomes. These 16S subunits are the smallest molecular entities known to retain chitin synthetase activity. Further dissociation leads to complete loss of activity. From studies with secretory mutants, yeast researchers concluded that chitosomes were components of the endocytosis pathway. However, key structural and enzymatic characteristics argue in favor of the chitosome being poised for exocytotic delivery rather than endocytotic recycling. The chitosome represents the main vehicle for delivering chitin synthetase to the cell surface. An immediate challenge is to elucidate chitosome ontogeny and the role of proteins encoded by the reported chitin synthetase genes in the structure or function of chitosomes. The ultimate challenge would be to understand how the chitosome integrates with the cell surface to construct the organized microfibrillar skeleton of the fungal cell wall.  相似文献   

7.
Molecular methods of taxonomy and phylogeny have changed the way in which life on earth is viewed; they have allowed us to transition from a eukaryote-centric (five-kingdoms) view of the planet to one that is peculiarly prokarote-centric, containing three kingdoms, two of which are prokaryotic unicells. These prokaryotes are distinguished from their eukaryotic counterparts by their toughness, tenacity and metabolic diversity. Realization of these features has, in many ways, changed the way we feel about life on earth, about the nature of life past and about the possibility of finding life elsewhere. In essence, the limits of life on this planet have expanded to such a degree that our thoughts of both past and future life have been altered. The abilities of prokaryotes to withstand many extreme conditions has led to the term extremophiles, used to describe the organisms that thrive under conditions thought just a few years ago, to be inconsistent with life. Perhaps the most extensive adaptation to extreme conditions, however, is represented by the ability of many bacteria to survive nutrient conditions not compatible with eukaryotic life. Prokaryotes have evolved to use nearly every redox couple that is in abundance on earth, filling the metabolic niches left behind by the oxygen-using, carbon-eating eukaryotes. This metabolic plasticity leads to a common feature in physically stratified environments of layered microbial communities, chemical indicators of the metabolic diversity of the prokaryotes. Such 'metabolic extremophily' forms a backdrop by which we can view the energy flow of life on this planet, think about what the evolutionary past of the planet might have been, and plan ways to look for life elsewhere, using the knowledge of energy flow on earth.  相似文献   

8.
Immunotherapy: past,present and future   总被引:15,自引:0,他引:15  
  相似文献   

9.
10.
On 12-15 May 2011, a diverse group of students, researchers and practitioners from across Canada and around the world met in Banff, Alberta, to discuss the many facets of biodiversity science at the 6th Annual Meeting of the Canadian Society for Ecology and Evolution.  相似文献   

11.
Plague: past, present, and future   总被引:2,自引:0,他引:2  
  相似文献   

12.
Biodiversity: past, present, and future   总被引:2,自引:0,他引:2  
Data from the fossil record are used to illustrate biodiversity in the past and estimate modern biodiversity and loss. This data is used to compare current rates of extinction with past extinction events. Paleontologists are encouraged to use this data to understand the course and consequences of current losses and to share this knowledge with researchers interested in conservation and ecology.  相似文献   

13.
Diamidines, and pentamidine in particular, have a long history as valuable chemotherapeutic agents against infectious disease. Their selectivity is due mostly to selective accumulation by the pathogen, rather than the host cell; and acquired resistance is frequently the result of changes in transmembrane transport of the drug. Here, recent progress in elucidating the mechanisms of diamidine transport in three important protozoan pathogens, Trypanosoma brucei, Leishmania and Plasmodium falciparum, is reviewed, and the implications for drug resistance are discussed.  相似文献   

14.
Drug resistance is a major problem in cancer chemotherapy and such resistance may be responsible for treatment failure in 90 % of patients with metastatic cancer. From the research work in the past 30 years, multi-mechanisms responsible for the development of drug resistance have been identified. However, to date single agents that target specific single mechanisms of resistance have not been proven effective. Theoretically, herbs have the potential to target multi-mechanisms of resistance since they contain multiple components and may provide an exciting potential in overcoming drug resistance. The present paper provides an overview of the known mechanisms of resistance and reviews the existing data on herbal medicines (Chinese medicines) as chemosensitizing agents from both the English and Chinese literature. Our review found that certain herbs are capable of inducing strong chemosensitizing effect with various mechanisms, but relevant information useful for development of herbs as viable products for therapeutic use is generally inadequate. Ideas for improving in vitro screening and animal/clinical studies that could enhance future development of herbal product as chemosensitizing agent for the treatment of resistant cancer are also discussed.  相似文献   

15.
Neutral sphingomyelinase: past, present and future   总被引:2,自引:0,他引:2  
Sphingomyelin and its metabolic products are now known to have second messenger functions in a variety of cellular signaling pathways. At the epicenter of the sphingomyelin--cell signaling pathway is a family of phospholipases called sphingomyelinases. These enzymes cleave sphingomyelin to produce ceramide and phosphocholine. Ceramide in turn serves as a lipid second messenger that induces a variety of cell regulatory phenomenon such as programmed cell death (apoptosis), cell differentiation, cell proliferation, and sterol homeostasis. Neutral sphingomyelinase (N-SMase) is a Mg2+ sensitive enzyme that can be activated by a host of physiologically relevant and structurally diverse molecules like tumor necrosis factor-alpha (TNF-alpha), oxidized human low density lipoproteins (Ox-LDL), and several growth factors. Large amounts of ceramide accumulate in human fatty streaks and plaques along with Ox-LDL, growth factors, and proinflammatory cytokines in human atherosclerosis. A further role of ceramide and N-SMase in atherosclerosis was uncovered by the finding that Ox-LDL and TNF-alpha stimulated N-SMase activity. In turn, ceramide and/or a homolog serves as an important stress signaling molecule in signal transduction, which leads to apoptosis. Interestingly, an antibody against N-SMase can abrogate Ox-LDL and TNF-alpha induced apoptosis, and therefore may be useful for additional studies of apoptosis in experimental animals. Overexpression of recombinant human N-SMase in human aortic smooth muscle cells markedly stimulate apoptosis, presumably via the multioligomerization of the 'death domain'. Since plaque stability is an integral aspect of atherosclerosis management, activation of N-SMase and subsequent apoptosis may be vital events in the onset of plaque rupture, stroke and heart failure. In contrast to these observations in human hepatocytes, TNF-alpha mediated N-SMase activation did not induce apoptosis. Rather it stimulated the maturation of sterol regulatory element (SRE) binding protein (SREBP-1). Moreover, a cell permeable ceramide was found to reconstitute the phenomenon above in a sterol-independent fashion. These findings provide alternate avenues for therapy of patients with hypercholesterolemia and atherosclerosis. The findings reported here suggests that N-SMase plays important cell regulatory roles and provide an exciting opportunity to further these findings to understand the pathophysiology of human disease states.  相似文献   

16.
Meta-analysis: the past, present and future   总被引:1,自引:0,他引:1  
  相似文献   

17.
RNA interference (RNAi) is the sequence-specific gene silencing induced by double-stranded RNA. RNAi is mediated by 21-23 nucleotide small interfering RNAs (siRNAs) which are produced from long double-stranded RNAs by RNAse II-like enzyme Dicer. The resulting siRNAs are incorporated into a RNA-induced silencing complex (RISC) that targets and cleaves mRNA complementary to the siRNAs. Since its inception in 1998, RNAi has been demonstrated in organisms ranging from trypanosomes to nematodes to vertebrates. Potential uses already in progress include the examination of specific gene function in living systems, the development of anti-viral and anti-cancer therapies, and genome-wide screens. In this review, we discuss the landmark discoveries that established the contextual framework leading up to our current understanding of RNAi. We also provide an overview of current developments and future applications.  相似文献   

18.
J E Boone 《CMAJ》1980,123(12):1201-1202
  相似文献   

19.
20.
The discovery of receptor-activity-modifying proteins (RAMPs) as accessory proteins required for the appropriate localization and function of certain G-protein coupled receptors (GPCRs) produced a paradigm shift in our understanding of GPCR regulation. Three RAMPs have now been demonstrated to be crucial for various aspects of the life cycle of calcitonin-like receptor (CLR) including endoplasmic reticulum-to-Golgi translocation, internalization and recycling. Although the RAMP-CLR interaction was the first to be identified, other GPCRs belonging to both the class B and C families of GPCRs also seem to be regulated by RAMPs. The recent advances in our knowledge of the cellular and biochemical regulation of RAMPs and how they in turn regulate the life cycle of GPCRs could lead to therapeutic advances in several diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号