首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactivity of protein S4-specific antibody preparations with 30 S ribosomal subunits and intermediates of in vitro subunit reconstitution has been characterized using a quantitative antibody binding assay. Anti-S4 antibody preparations did not react with native 30 S ribosomal subunits; however, they did react with various subunit assembly intermediates that lacked proteins S5 and S12. The inclusion of proteins S5 and S12 in reconstituted particles resulted in a large decrease in anti-S4 reactivity, and it was concluded that proteins S5 and S12 are primarily responsible for the masking of S4 antigenic determinants in the 30 S subunit. The effect of S5 and S12 on S4 accessibility is consistent with data from a variety of other approaches, suggesting that these proteins form a structural and functional domain in the small ribosomal subunit.  相似文献   

2.
A practical synthesis of (2S,4S)-4-hydroxyproline (1) based on DCC-induced inversion of the hydroxyl group of (2S,4R)-4-hydroxyproline (2) is described.  相似文献   

3.
4.
Summary A family in which two homoduplicated C4 haplotypes (or supergenes) segregate is described. One haplotype C4F * 3 C4F *2.2 is composed of two C4F alleles and the other C4S * 5.1 C4S *1 of two C4S alleles. The C4F duplication haplotype is a partial inhibitor of the Rodgers antigen, and judged from our family and population material, it seems to be rather frequent and associated with HLAB *35, Bf * F, and HLAD/DR *1. The C4S duplication haplotype is Rg(a-) and is not identified in individuals without another S, Ch(a+) variant.This work was supported by grant No 12-1727 from the Danish Medical Research Council  相似文献   

5.
6.
Ribosomal proteins S4 and S5 participate in the decoding and assembly processes on the ribosome and the interaction with specific antibiotic inhibitors of translation. Many of the characterized mutations affecting these proteins decrease the accuracy of translation, leading to a ribosomal-ambiguity phenotype. Structural analyses of ribosomal complexes indicate that the tRNA selection pathway involves a transition between the closed and open conformations of the 30S ribosomal subunit and requires disruption of the interface between the S4 and S5 proteins. In agreement with this observation, several of the mutations that promote miscoding alter residues located at the S4-S5 interface. Here, the Escherichia coli rpsD and rpsE genes encoding the S4 and S5 proteins were targeted for mutagenesis and screened for accuracy-altering mutations. While a majority of the 38 mutant proteins recovered decrease the accuracy of translation, error-restrictive mutations were also recovered; only a minority of the mutant proteins affected rRNA processing, ribosome assembly, or interactions with antibiotics. Several of the mutations affect residues at the S4-S5 interface. These include five nonsense mutations that generate C-terminal truncations of S4. These truncations are predicted to destabilize the S4-S5 interface and, consistent with the domain closure model, all have ribosomal-ambiguity phenotypes. A substantial number of the mutations alter distant locations and conceivably affect tRNA selection through indirect effects on the S4-S5 interface or by altering interactions with adjacent ribosomal proteins and 16S rRNA.  相似文献   

7.
Most cultivars of Japanese pear (Pyrus pyrifolia Nakai) exhibit gametophytic self-incompatibility controlled by a single S-locus with multiple S-haplotypes. A self-compatible (SC) cultivar, ??Osanijisseiki?? (S 2 S 4 sm ), arising by a bud mutation of ??Nijisseiki?? (S 2 S 4 ), has a stylar-part mutant S 4 sm -haplotype, which lacks the pistil S 4 gene, which is the S 4 -RNase gene. To efficiently breed SC cultivars, we selected ??Nashi Chuukanbohon Nou 1 Gou?? (??NCN1??) harboring homozygous S 4 sm from a self-progeny of Osanijisseiki and crossed it with ??Okusankichi?? (S 5 S 7 ), ??Hakkou?? (S 4 S 5 ), or ??Ri-14?? (S 1 S 2 ). Fruit set (%) was compared after self-pollination of the trees in the three progenies. All trees derived from the three progenies were predicted to be SC, except for the S 4 S 4 sm trees in the progeny of NCN1 × Hakkou. However, S 1 S 4 sm trees in the progeny of NCN1 × Ri-14 proved to be self-incompatible (SI). The pollen from Osanijisseiki was incompatible with ??Doitsu?? (S 1 S 2 ), but that from Nijisseiki was compatible, suggesting a possibility that the S 4 sm pollen was rejected by S 1 -harboring pistils. This possibility was clarified by crossing the pollen from NCN1 (S 4 sm S 4 sm ) to Doitsu, ??Imamuraaki?? (S 1 S 6 ), or ??Hougetsu?? (S 1 S 7 ), all of which proved incompatible. On the other hand, S 4 sm pollen was accepted by pistils harboring the S 2 , S 3 , S 5 , S 6 , S 7 , S 9 , and S k haplotypes. The dual recognition of S 1 and S 4 pistils by S 4 sm pollen can be attributed to a mutation of the pollen S 4 gene(s).  相似文献   

8.
Here we show that ram mutations, either in ribosomal protein S4 or S5, decrease the proofreading flows for both cognate and noncognate ternary complexes bound by streptomycin-dependent (SmD) ribosomes. This effect is accompanied by a slight increase in the overall error frequency. More important, however, is the decreased proofreading of the cognate species which is almost reduced to wild-type levels. The data suggest that it may be the reduction of the proofreading of the cognate substrate that is important for suppressing streptomycin dependence. Furthermore, we show that rpsE mutants, selected from streptomycin-dependent strains, behave kinetically very similarly to the previously described rpsD mutants.  相似文献   

9.
4S, 5S, AND 18S + 28S RNA from the newt Taricha granulosa granulosa were iodinated in vitro with carrier-free 125I and hybridized to the denatured chromosomes of Taricha granulosa and Batrachoseps weighti. Iodinated 18S + 28S RNA hybridizes to the telomeric region on the shorter arm of chromosome 2 and close to the centromere on the shorter arm of chromosome 9 from T. granulosa. On this same salamander the label produced by the 5S RNA is located close to or on the centromere of chromosome 7 and the iodinated 4S RNA labels the distal end of the longer arm of chromosome 5. On the chromosomes of B. wrighti, 18S + 28S RNA hybridizes close to the centromeric region on the longer arm of the largest chromosome. Two centromeric sites are hybridized by the iodinated 5S RNA. After hybridization with iodinated 4S RNA, label is found near the end of the shorter arm of chromosome 3. It is concluded that both ribosomal and transfer RNA genes are clustered in the genome of these two salamanders.  相似文献   

10.
The structural, electronic and magnetic properties of neutral and anion Fe2S2, Fe3S4 and Fe4S4 have been investigated with the aid of previous photoelectron spectroscopy and density functional theory calculations. Theoretical electron detachment energies (both vertical and adiabatic) of anion clusters for the lowest energy structure were computed and compared with the experimental results to verify the ground states. The optimized structures show that the ground state structures of Fe2S2 0/?, Fe3S4 0/? and Fe4S4 0/? favor high spin state and are similar to their structures in proteins. The electron delocalization pattern for all the clusters and the nature of bonding between Fe and S atoms were studied by analyzing molecular orbitals. Natural population analysis demonstrates that Fe atoms act as an electron donor in all clusters, and the electron density difference map clearly shows the direction of the electron flow over the whole complex. Furthermore, the investigated magnetism shows that the Fe atoms carried most of the magnetic moments, which is due mainly to the 3d state, while only very small magnetic moments are found on S atoms.  相似文献   

11.
Dissection of the 16S rRNA binding site for ribosomal protein S4   总被引:4,自引:0,他引:4  
The ribosomal protein S4 from Escherichia coli is essential for initiation of assembly of 30S ribosomal subunits. We have undertaken the identification of specific features required in the 16S rRNA for S4 recognition by synthesizing mutants bearing deletions within a 460 nucleotide region which contains the minimum S4 binding site. We made a set of large nested deletions in a subdomain of the molecule, as well as individual deletions of nine hairpins, and used a nitrocellulose filter binding assay to calculate association constants. Some small hairpins can be eliminated with only minor effects on S4 recognition, while three hairpins scattered throughout the domain (76-90, 376-389 and 456-476) are essential for specific interaction. The loop sequence of hairpin 456-476 is important for S4 binding, and may be directly recognized by the protein. Some of the essential features are in phylogenetically variable regions; consistent with this, Mycoplasma capricolum rRNA is only weakly recognized by S4, and no specific binding to Xenopus laevis rRNA can be detected.  相似文献   

12.
Gerstner RB  Pak Y  Draper DE 《Biochemistry》2001,40(24):7165-7173
Protein S4 is essential for bacterial small ribosomal subunit assembly and recognizes the 5' domain (approximately 500 nt) of small subunit rRNA. This study characterizes the thermodynamics of forming the S4-5' domain rRNA complex from a thermophile, Bacillus stearothermophilus, and points out unexpected differences from the homologous Escherichia coli complex. Upon incubation of the protein and RNA at temperatures between 35 and 50 degrees C under ribosome reconstitution conditions [350 mM KCl, 8 mM MgCl2, and 30 mM Tris (pH 7.5)], a complex with an association constant of > or = 10(9) M(-1) was observed, more than an order of magnitude tighter than previously found for the homologous E. coli complex under similar conditions. This high-affinity complex was shown to be stoichiometric, in equilibrium, and formed at rates on the order of magnitude expected for diffusion-controlled reactions ( approximately 10(7) M(-1) x s(-1)), though at low temperatures the complex became kinetically trapped. Heterologous binding experiments with E. coli S4 and 5' domain RNA suggest that it is the B. stearothermophilus S4, not the rRNA, that is activated by higher temperatures; the E. coli S4 is able to bind 5' domain rRNA equally well at 0 and 37 degrees C. Tight complex formation requires a low Mg ion concentration (1-2 mM) and is very sensitive to KCl concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 9.3]. The protein has an unusually strong nonspecific binding affinity of 3-5 x 10(6) M(-1), detected as a binding of one or two additional proteins to the target 5' domain RNA or two to three proteins binding a noncognate 23S rRNA fragment of the approximately same size. This binding is not as sensitive to monovalent ion concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 6.3] as specific binding and does not require Mg ion. These findings are consistent with S4 stabilizing a compact form of the rRNA 5' domain.  相似文献   

13.
Structural relationship between the S1 and S4 subunits of pertussis toxin   总被引:1,自引:0,他引:1  
Abstract Pertussis toxin, the most important protective antigen of Bordetella pertussis , is a 106-kDa hexameric protein composed of an A-promoter (subunit S1) and a pentameric B-oligomer (S2 + S3 + 2S4 + S5). The most potent mouse-protective monoclonal antibodies against both respiratory and intracerebral infections were specified for either S1 or S4 and competed with each other in binding to epitopes of native pertussis toxin captuted by haptoglobin or in solution, although they did not compete on unfolded pertussin toxin. These data suggest that the protective epitope(s) of S1 and S4 are very closely correlated; they are probably close] together sterically. Non-protective anti-S1 and anti-S4 monoclonal antibodies recognized inner antigenic determinants which are not exposed on the surface o native pertussis toxin and interfered with association of the A-protomer and the B-oligomer. These data suggest that the A-protomer and the S4 subunit of the B-oligomer may be closely associated in the native hexameric pertussis toxin molecule.  相似文献   

14.
Ribosomal proteins stabilize the folded structure of the ribosomal RNA and enable the recruitment of further proteins to the complex. Quantitative hydroxyl radical footprinting was used to measure the extent to which three different primary assembly proteins, S4, S17, and S20, stabilize the three-dimensional structure of the Escherichia coli 16S 5′ domain. The stability of the complexes was perturbed by varying the concentration of MgCl2. Each protein influences the stability of the ribosomal RNA tertiary interactions beyond its immediate binding site. S4 and S17 stabilize the entire 5′ domain, while S20 has a more local effect. Multistage folding of individual helices within the 5′ domain shows that each protein stabilizes a different ensemble of structural intermediates that include nonnative interactions at low Mg2+ concentration. We propose that the combined interactions of S4, S17, and S20 with different helical junctions bias the free-energy landscape toward a few RNA conformations that are competent to add the secondary assembly protein S16 in the next step of assembly.  相似文献   

15.
16.
17.
Ex novo enzymic synthesis of the two 4Fe-4S clusters of Clostridium pasteurianum ferredoxin has been achieved by incubation of the apoprotein with catalytic amounts of the sulfurtransferase rhodanese in the presence of thiosulfate, DL-dihydrolipoate and ferric ammonium citrate. This enzymic reconstitution procedure was compared to a chemical one, in which the enzyme was replaced by sodium sulfide. A further comparison was made with the results previously obtained in the enzymic synthesis of the 2Fe-2S cluster of spinach ferredoxin, allowing the following conclusions to be drawn. The nature of the cluster to be inserted into the reconstituted iron-sulfur protein is determined by the apoprotein itself. The refolding of the structure of the iron-sulfur proteins around the newly inserted cluster is the rate-limiting step in both chemical and enzymic reconstitution. Rhodanese appears to play a role in the recovery of the native architecture of the reconstituted iron-sulfur protein(s). The extension to the 4Fe-4S centers of the rhodanese-based biosynthetic system allows this enzymic route to be proposed as a general way to the in vivo synthesis of iron-sulfur structures.  相似文献   

18.
R J Krueger  L M Siegel 《Biochemistry》1982,21(12):2905-2909
Spinach ferredoxin-sulfite reductase (SiR) contains one siroheme and one Fe4S4 center per polypeptide subunit. The heme is entirely in the high-spin Fe3+ state in the oxidized enzyme. When SiR is photochemically reduced with ethylenediaminetetraacetate (EDTA)-deazaflavin, the free enzyme and its CN- and CO complexes show changes in absorption spectra associated with the heme even after the heme has been reduced from the Fe3+ to the Fe2+ state. With CO- or CN--SiR, these spectral changes are associated with the appearance of a classical "g = 1.94" type of EPR spectrum characteristic of reduced Fe4S4 centers. The line shapes and exact g values of the g = 1.94 EPR spectra vary with the nature of the ligand bound to the heme Fe. Photoreduction of free SiR results in production of a novel type of EPR signal, with g = 2.48, 2.34, and 2.08 in the fully reduced enzyme; this signal accounts for 0.6 spin per heme. (A small g = 1.94 type EPR signal, representing 0.2 spin per heme, is also found.) These data suggest the presence of a strong magnetic interaction between the siroheme and Fe4S4 centers in spinach SiR, this interaction giving rise to different EPR signals depending on the spin state of the heme Fe in the reduced enzyme.  相似文献   

19.
S100A4, a member of the S100 family of Ca2+-binding proteins, is directly involved in tumor metastasis. In addition to its expression in tumor cells, S100A4 is expressed in normal cells and tissues, including fibroblasts and cells of the immune system. To examine the contribution of S100A4 to normal physiology, we established S100A4-deficient mice by gene targeting. Homozygous S100A4−/− mice are fertile, grow normally and exhibit no overt abnormalities; however, the loss of S100A4 results in impaired recruitment of macrophages to sites of inflammation in vivo. Consistent with these observations, primary bone marrow macrophages (BMMs) derived from S100A4−/− mice display defects in chemotactic motility in vitro. S100A4−/− BMMs form unstable protrusions, overassemble myosin-IIA, and exhibit altered colony-stimulating factor-1 receptor signaling. These studies establish S100A4 as a regulator of physiological macrophage motility and demonstrate that S100A4 mediates macrophage recruitment and chemotaxis in vivo.  相似文献   

20.
Ribosomal proteins S3, S4, S7, S20 from Escherichia coli have been studied by small-angle X-ray scattering techniques. The molecular weights found by X-ray scattering agree with other determinations. The large values of the radii of gyration indicate anisometric particles. A more detailed morphological analysis is hindered by low solubility. An interpretation of the experimental results is given in terms of compact objects of simple shape. Yet the possibility is envisaged that these proteins may be less rigid and compact than other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号