首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
The effect of previous insecticide use patterns for horn fly control on the susceptibility spectrum of horn fly (Haematobia irritans [L.]) populations from Kentucky and Arkansas is described. Populations of horn flies from both states were tested with three pyrethroids (cyhalothrin, cypermethrin, and permethrin), three organophosphates (diazinon, pirimiphos methyl, and tetrachlorvinphos), and a chlorinated hydrocarbon (methoxychlor). Dose-mortality data indicated insecticide resistance in Arkansas and Kentucky. Two permethrin-resistant horn fly populations in Kentucky that did not have a history of exposure to methoxychlor were cross-resistant to this chlorinated hydrocarbon. Horn fly populations from both states with a history of at least three consecutive years of exposure to various pyrethroid ear tags were subsequently exposed to cattle tagged with cyhalothrin-impregnated ear tags for 15-16 wk. Such exposure resulted in a decrease in susceptibility to this pyrethroid (ranging from approximately 30 to greater than 100-fold) when compared with levels before treatment. Horn fly populations from Arkansas resistant to cyhalothrin (as a result of exposure to cyhalothrin ear tags) were cross-resistant to pirimiphos methyl. Seasonal exposure of an Arkansas and Kentucky horn fly population to cattle with ear tags impregnated with pirimiphos methyl resulted in a significant decrease in susceptibility to this organophosphate.  相似文献   

2.
A study was conducted at the Pressler ranch, near Kerrville, Texas, USA between 2002 and 2006 to determine the dynamics and mechanisms of resistance to permethrin in a field population of the horn fly, Haematobia irritans irritans (L.). Changes of resistance to pyrethroid insecticide associated with use of a pour-on formulation of cyfluthrin in 2002 and use of diazinon ear tags in subsequent years were studied using a filter paper bioassay technique and a polymerase chain reaction assay that detects two sodium channel mutations, kdr and super-kdr resistance alleles. A maximum of 294-fold resistance to permethrin was observed in the summer of 2002. A significant decrease in the resistance level was observed in spring 2003, and resistance continued to decline after animals were treated with diazinon ear tags. In response to pyrethroid treatments, the allelic kdr and super-kdr frequency increased from 56.3% to 93.8% and from 7.5% to 43.8%, respectively in 2002, and decreased significantly in 2003 when the pyrethroid insecticide was no longer used to treat animals. Females were found to have a higher allelic super-kdr frequency than males in 2002, while no difference was detected between males and females in the allelic kdr frequency. There was a significant positive correlation between frequencies of the sodium channel mutations and levels of permethrin resistance, suggesting that the sodium channel mutations, kdr and super-kdr , are the major mechanisms of resistance to pyrethroids in this horn fly population. Results of synergist bioassays also indicated possible contributions of two metabolic detoxification mechanisms, the mixed function oxidases (MFO) and glutathione S-transferases (GST). Compared to a horn fly infestation of an untreated herd, treatments with the pyrethroid pour-on formulation failed to control horn flies at the Pressler ranch in 2002. Sustained control of horn flies was achieved with the use of diazinon ear tags in 2003 and subsequent years.  相似文献   

3.
Insecticide resistance in the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae),has been demonstrated previously, but mostly with insecticides that are no longer used, such as the organochlorines. Resistance to commonly used pyrethroids has been evaluated twice, but only in the midwestern United States. Stable fly susceptibility to a commonly used pyrethroid, permethrin, was determined in Florida to assess the possibility of resistance development. Diagnostic concentration evaluations of three stable fly field strains demonstrated a maximum of 57 and 21% survival to permethrin residues of 3x and 10x the LC99 of a susceptible strain, respectively. Stable flies from an equine facility with no reported insecticide use demonstrated approximately 20% survival with a 3x diagnostic concentration. Despite a distance of 91-km between field collection sites, survival profiles of field-collected stable fly strains were similar. Although an established stable fly colony collected from a local dairy previously expressed low level resistance to permethrin residues, five generations of laboratory permethrin selection increased resistance 15-fold.  相似文献   

4.
The horn fly, Haematobia irritans (L.) (Diptera: Muscidae), was introduced to Chile in the beginning of the 1990s. Since its introduction, farmers have controlled this pest almost exclusively with insecticides. To understand the consequences of different control strategies on the development of insecticide resistance and their persistence, a field survey was conducted at eight farms in the south of Chile to characterize insecticide resistance in field populations and resistance mechanisms. Horn fly samples were assayed to determine levels of resistance to pyrethroids and diazinon, genotyped for kdr and HialphaE7 mutations, and tested for general esterase activity. All field populations, including ones that were not treated with insecticides for the past 5 yr, showed high levels of cypermethrin resistance and high frequencies of the kdr mutation. None of the fly populations demonstrated resistance to diazinon and the HialphaE7 mutation was not detected in any of the fly samples. Esterase activities in all populations were comparable to those found in the susceptible reference strain. The findings of high frequencies of homozygous resistant and heterozygous individuals both in insecticide treated horn fly populations and in the untreated fly populations suggests complex interactions among field populations of the horn fly in Chile.  相似文献   

5.
Oriental fruit flies, Bactrocera dorsalis (Hendel), were treated with 10 insecticides, including six organophosphates (naled, trichlorfon, fenitrothion, fenthion, formothion, and malathion), one carbamate (methomyl), and three pyrethroids (cyfluthrin, cypermethrin, and fenvalerate), by a topical application assay under laboratory conditions. Subparental lines of each generation treated with the same insecticide were selected for 30 generations and were designated as x-r lines (x, insecticide; r, resistant). The parent colony was maintained as the susceptible colony. The line treated with naled exhibited the lowest increase in resistance (4.7-fold), whereas the line treated with formothion exhibited the highest increase in resistance (up to 594-fold) compared with the susceptible colony. Synergism bioassays also were carried out. Based on this, S,S,S-tributyl phosphorotrithioate displayed a synergistic effect for naled, trichlorfon, and malathion resistance, whereas piperonyl butoxide displayed a synergistic effect for pyrethroid resistance. All 10 resistant lines also exhibited some cross-resistance to other insecticides, not only to the same chemical class of insecticides but also to other classes. However, none of the organophosphate-resistant or the methomyl-resistant lines exhibited cross-resistance to two of the pyrethroids (cypermethrin and fenvalerate). Overall, the laboratory resistance and cross-resistance data developed here should provide useful tools and information for designing an insecticide management strategy for controlling this fruit fly in the field.  相似文献   

6.
Mechanisms and genetics of resistance to pyrethroid insecticides were investigated in a strain of house fly (ASPR) collected from a cattle ranch in Miyagi, Gunma Prefecture, Japan. Flies were selected in the laboratory with the pyrethroid insecticide permethrin. Both sexes were resistant to pyrethroids; however, females were 22- to 245-fold more resistant than males. Permethrin resistance could be partly suppressed by the monooxygenase inhibitor piperonyl butoxide in females, but not in males. In this strain, sex was determined by a male factor on the third autosome. The relationship of the autosomal male factor to the lower resistance levels observed in the males and the mechanisms of resistance expressed in each sex are discussed.  相似文献   

7.
A bioassay was used to detect active site insensitivity (knock-down resistance [kdr]) in pyrethroid resistant larvae of the horn fly, Haematobia irritans (L.). The larvae of the resistant population had KD50's 42.0-, 28.1- and 29.2-fold greater to permethrin, fenvalerate and lambda-cyhalothrin, respectively, compared with the susceptible population. In filter paper bioassays, resistant adult horn flies were 17 to 39.1 times less susceptible to the pyrethroids than susceptible adults at LC50. These results further document active site insensitivity as the major mechanism of pyrethroid resistance in the horn fly.  相似文献   

8.
Mechanisms of resistance to pyrethroid insecticides   总被引:1,自引:0,他引:1  
In the 10 years or so since the photostable pyrethroid insecticides such as permethrin and fenvolerate were introduced, this family of compounds has become widely used to control agricultural pests, and finds increasing usage to control arthropods of medical and veterinary importance. The synthetic pyrethroids offer many advantages for veterinary and public health use, particularly their selectivity, high toxicity to insects, and relative lack of chronic effects. They are also inherently stable, and so have become widely used as residual sprays on house walls to control insects in the domestic environment. But as with other classes of insecticides such as organochlorines, organophosphotes and carbamates, resistance to pyrethroids is now increasingly reported. In this article, Tom Miller explains the principle mechanisms of resistance to pyrethroids, using the North American horn fly (Haematobia irritans) as an example now showing many common resistance traits.  相似文献   

9.
Resistance to malathion has been reported in field populations of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in areas of Spain where an intensive use of this insecticide was maintained for several years. The main goal of this study was to determine whether resistance to malathion confers cross-resistance to different types of insecticides. Susceptibility bioassays showed that the malathion-resistant W-4Km strain (176-fold more resistant to malathion than the susceptible C strain) has moderate levels of cross-resistance (three- to 16-fold) to other organophosphates (trichlorphon, diazinon, phosmet and methyl-chlorpyrifos), the carbamate carbaryl, the pyrethroid lambda-cyhalothrin, and the benzoylphenylurea derivative lufenuron, whereas cross-resistance to spinosad was below two-fold. The W-4Km strain was selected with lambda-cyhalothrin to establish the lambda-cyhalothrin-resistant W-1Klamda strain (35-fold resistant to lambda-cyhalothrin). The synergistic activity of the esterase inhibitor DEF with lambda-cyhalothrin and the increase in esterase activity in the W-1Klamda strain suggests that esterases may be involved in the development of resistance to this insecticide. Our results showed that resistance to malathion may confer some degree of cross-resistance to insecticides currently approved for the control of Mediterranean fruit fly in citrus crops (lambda-cyhalothrin, lufenuron, and methyl-chlorpyrifos). Especially relevant is the case of lambda-cyhalothrin, because we have shown that resistance to this insecticide can rapidly evolve to levels that may compromise its effectiveness in the field.  相似文献   

10.
Lambdacyhalothrin cattle ear tags controlled horn fly, Haematobia irritans (L.), for 14 wks or longer during 1986-1988 in Georgia, USA. In 1989 and 1990, control of < 50 horn flies per side of cow was achieved for < or = 4 wk because of high levels of pyrethroid resistance in horn flies selected with lambdacyhalothrin. The highest resistance ratios (RRs) were seen in 1989. These were 498 for lambdacyhalothrin; 92,000 for fenvalerate; and 54 for permethrin. RRs for cypermethrin as high as 8,800 were estimated in 1990 when the RR for fenvalerate was only 1,060. No cross-resistance to diazinon was detected. These high levels of pyrethroid resistance seem to have a large component of metabolic resistance. Synergistic coefficients as high as 3,600 were determined by addition of nonlethal amounts of piperonyl butoxide. Resistance development in a no-pyrethroid-use area indicates movements of > or = 3km by sufficient numbers of horn flies can significantly change the RR.  相似文献   

11.
A house fly strain, ALHF, was collected from a poultry farm in Alabama after a control failure with permethrin, and further selected in the laboratory with permethrin for five generations. The level of resistance to permethrin in ALHF was increased rapidly from an initial 260-fold to 1,800-fold after selection. Incomplete suppression of permethrin resistance by piperonyl butoxide (PBO) and S,S,S,-tributylphosphorotrithioate (DEF) reveals that P450 monooxygenase- and hydrolase-mediated detoxication, and one or more additional mechanisms are involved in resistance to permethrin. The ALHF strain showed a great ability to develop resistance or cross-resistance to different insecticides within and outside the pyrethroid group including some relatively new insecticides. Resistance to beta-cypermethrin, cypermethrin, deltamethrin, and propoxur (2,400-4,200-, 10,000-, and > 290-fold, respectively, compared with a susceptible strain, aabys) in ALHF house flies was partially or mostly suppressed by PBO and DEF, indicating that P450 monooxygenases and hydrolases are involved in resistance to these insecticides. Partial reduction in resistance with PBO and DEF implies that multiresistance mechanisms are responsible for resistance. Fifteen- and more than fourfold resistance and cross-resistance to chlorpyrifos and imidacloprid, respectively, were not effected by PBO or DEF, indicating that P450 monooxygenases and hydrolases are not involved in resistance to these two insecticides. Forty-nine-fold cross-resistance to fipronil was mostly suppressed by PBO and DEF, revealing that monooxygenases are a major mechanism of cross-resistance to fipronil. Multiresistance mechanisms in the ALHF house fly strain, however, do not confer cross-resistance to spinosad, a novel insecticide derived from the bacterium Saccharopolyspora spinosa. Thus, we propose that spinosad be used as a potential insecticide against house fly pests, especially resistant flies.  相似文献   

12.
Adult brown, Euschistus servus (Say); green, Acrosternum hilare (Say); and southern green, Nezara viridula (L.), stink bugs were collected from soybean, Glycine max (L.) Merr., in fall 2001 and 2002 near Stoneville, MS, and Eudora, AR. A glass-vial bioassay was used to determine LC50 values for the three species of stink bugs for the pyrethroids bifenthrin, cypermethrin, cyfluthrin, lambda-cyhalothrin, and permethrin, and the organophosphates acephate, dicrotophos, malathion, and methyl parathion. Results confirmed findings of other researchers that the brown stink bug was less susceptible to pyrethroid and organophosphate insecticides than were green and southern green stink bugs. The susceptibility of all three stink bug species to the insecticides tested was very similar at both test locations. The study established baseline insecticide mortality data from two locations in the mid-South for three stink bug species that are pests of soybean and cotton, Gossypium spp. Data from the tests are valuable for future use in studies on resistance and in resistance monitoring programs.  相似文献   

13.
Evidence suggests that there are separate binding domains for type I and II pyrethroid insecticides on the voltage gated sodium channel of the nerve cell axon, but there are no studies that have examined the mixture toxicity of nonester pyrethroids and type I and II pyrethroids. Therefore, we examined the effect of nonester pyrethroid (etofenprox), type I (permethrin), and type II (cypermethrin) pyrethroid insecticides alone and in all combinations to Drosophila melanogaster Meigen. The combination of permethrin + etofenprox and permethrin + cypermethrin demonstrated antagonistic toxicity, while the combination of cypermethrin + etofenprox demonstrated synergistic toxicity. The mixture ofpermethrin + cypermethrin + etofenprox demonstrated additive toxicity. The toxicity of permethrin + cypermethrin was significantly lower than the toxicity of cypermethrin alone, but the combination was not significantly different from permethrin alone. The toxicity of permethrin + cypermethrin + etofenprox was significantly greater than the toxicity of both permethrin and etofenprox alone, but it was significantly lower than cypermethrin alone. The mixture of permethrin and etofenprox was significantly less toxic than permethrin. The explanation for the decreased toxicity observed is most likely because of the competitive binding at the voltage-gated sodium channel, which is supported by physiological and biochemical studies of pyrethroids. Our results demonstrate that the assumption that the mixture toxicity of pyrethroids would be additive is not adequate for modeling the mixture toxicity of pyrethroids to insects.  相似文献   

14.
In order to prevent the resistance of Anopheles gambiae s.l. to pyrethroids from spreading too quickly and to lengthen the effectiveness of insecticide impregnated mosquito nets, it has recently been suggested to use mixtures of insecticides that have different modes of action. This study presents the results obtained with tulle mosquito nets treated with bifenthrin (a pyrethroid) and chlorpyrifos-methyl (an organophosphorous) both separately and in mixture on two strains of An. gambiae, one sensitive to all insecticides, and the other resistant to pyrethroids. The values of KDt50 and KDt95 and the mortality induced with the mixture of bifenthrin (25 mg/m2) and chlorpyrifos-methyl (4.5 mg/m2) show a significant synergistic effect on the strain of An. gambiae susceptible to insecticides. However, the tested combination does not induce any synergistic effect on the VKPR strain selected with permethrin, but only enhances the effectiveness of the two insecticides taken separately.  相似文献   

15.
Larvae of a house fly, Musca domestica L., strain collected in a chicken house near Pittsburg, Tex, after a control failure with the poultry feedthrough insecticide cyromazine showed 6.5-fold resistance to cyromazine and 10-fold resistance to diflubenzuron. Adults of the strain showed high levels of resistance to carbaryl, DDT, and diazinon; moderate resistance to cypermethrin and permethrin; and low resistance to dieldrin. In contrast, no resistance to cyromazine was observed in eight laboratory house fly strains with resistance to four groups of conventional insecticides. When the genetics of cyromazine resistance was investigated in crosses to susceptible strains with visible mutant markers, results indicated cyromazine resistance was incompletely dominant over susceptibility and the resistance gene was on chromosome V. The same or a closely linked gene conferred resistance to diflubenzuron. A strain containing only chromosome V from the original resistant strain was resistant to cyromazine and diflubenzuron, but not to other insecticides except for low level resistance to DDT and carbaryl. Resistance to the latter insecticides appeared to be due to a linked, but distinct, gene. Therefore, resistance to cyromazine and probably diflubenzuron appears to be genetically distinct from other types of insecticide resistance.  相似文献   

16.
Current status of pyrethroid resistance in anophelines   总被引:4,自引:0,他引:4  
Similarities between DDT and pyrethroid insecticides have led to widespread concern that cross-resistance between them might limit the usefulness of the latter. Both types of insecticide have similarities in chemical structure, both have a negative temperature coefficient (ie. they are more active at lower temperatures), both act as neurotoxins on sodium channels, and both produce the twin effects of knockdown and kill. As discussed by Tom Miller (see pages S8-S12) there is firm evidence for Pyrethroid resistance in some species of medical and veterinary importance - especially in the horn fly, Haemotobia irritans. But in the case of anopheline mosquitoes, the evidence for pyrethroid resistance is much less strong. As Colin Malcolm explains here, a critical analysis of available data indicates that true physiological resistance of anophelines to pyrethroids is much less widespread than previous commentaries suggest. Moreover, the risk of cross-resistance between pyrethroids and DDT may have been over-emphasized, since different resistance mechanisms appear to be involved.  相似文献   

17.
The susceptibility of representative pyrethroid (cypermethrin, deltamethrin, lambdacyhalothrin, bifenthrin), organophosphate (chlorpyriphos, triazophos, profenophos) and new chemistry insecticides (spinosad, indoxacarb and emamectin) was investigated for 18 field populations of Plutella xylostella (Linnaeus) from three different zones in Pakistan. The LC(50) (mg ml(-1); 48 h) values of pyrethroids for various populations ranged from 0.19-1.88 for cypermethrin, 0.31-2.64 for deltamethrin, 0.08-1.16 for lambdacyhalothrin and 0.07-0.88 for bifenthrin. The LC(50) (mg ml(-1); 48 h) of organophosphates ranged from 0.52-5.67 for chlorpyriphos, 0.37-4.14 for triazophos and 0.03-2.65 for profenophos. The most probable reason for low toxicity of organophosphates and pyrethroids is the evolution of multiple resistance mechanisms; however, further studies are required to establish these mechanisms. When these same products were tested against a susceptible laboratory population (Lab-Pak), the new chemistry compounds were significantly more toxic than pyrethroids and organophosphates. The results are discussed in relation to integrated pest management and insecticide resistance management strategies for P. xylostella.  相似文献   

18.
Introduction. The susceptibility of Anopheles albimanus to organophosphates, carbamates and pyrethroid insecticides was unknown in the Panama communities of Aguas Claras, Pintupo and Puente Bayano, located in the Amerindian Reservation of Madungandi. This region is considered a malaria transmission area, where An. albimanus is the main vector. Objective. The resistance to organophosphate insecticides, carbamates and pyrethroids was evaluated in field populations of the Anopheles albimanus in Panama. Materials and methods. Progeny of An. albimanus collected in three localities in the indigenous Madugandi region were exposed to bioassays of susceptibility to organophosphate insecticides (fenitrothion, malathion and chlorpyrifos), the carbamate (propoxur) and pyrethroids (deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin). The protocols were in accordance with those established for adult mosquitoes by World Health Organization. Results. The three strains of the An. albimanus were resistant to the pyrethroid insecticides deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin. Susceptibility remained for the organophosphate insecticides fenitrothion, malathion, chlorpyrifos, and the carbamate insecticide propoxur. Conclusion. The results provided important information to the vector control program, contributing to the application of new strategies on the use of insecticides, and thereby lengthening the life of the insecticide in use.  相似文献   

19.
A 20% diazinon formulation was evaluated for control efficacy against the horn fly, Haematobia irritans (L.), in the Morgan Recharger (Morgan International Products, College Grove, Tenn.). The Morgan Recharger releases insecticide with a wicking system from an insecticide reservoir and can be attached to an animal's ear or tail. This device was most effective against the horn fly when used as an ear tag with two per head; horn fly counts did not exceed five flies per side through 8 wk. The diazinon formulation tested was released from the Morgan Recharger at a decreasing rate. The problems and potential of the Morgan Recharger as an effective horn fly control device are discussed.  相似文献   

20.
Use of malathion for mosquito control in Cuba for 7 years up to 1986 has selected for elevated non-specific esterase and altered acetylcholinesterase (AChE) resistance mechanisms in populations of the pest mosquito Culex quinquefasciatus Say. These mechanisms are still present in relatively high frequencies in the Havana area, despite the replacement of malathion by pyrethroid insecticides for the last 3 years in the mosquito control programme. Samples of Culex quinquefasciatus populations from within a 100 km radius of Havana had high levels of resistance to malathion and lower levels of resistance to propoxur, but there was little or no cross-resistance to the organophosphorus insecticide pirimiphos-methyl. Selection with malathion for twenty-two consecutive generations in the laboratory increased the level of malathion resistance to 1208-fold and propoxur level to 1002-fold, but the maximum level of pirimiphos-methyl resistance was only 11-fold. Pirimiphos-methyl is still operationally effective, despite the resistance mechanisms segregating, so this insecticide if used for control is unlikely to select either of the known resistance factors directly in the field population. Since 1986, pyrethroids have been used extensively, and low levels of pyrethroid resistance were detected in two of five field population samples tested. Malathion selection did not increase the level of pyrethroid resistance, which indicates that one or more distinct pyrethroid resistance factors are now being selected in the field populations of Culex quinquefasciatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号