首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of telomere in endothelial dysfunction in atherosclerosis   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Telomeres consist of repeats of G-rich sequence at the end of chromosomes. These DNA repeats are synthesized by enzymatic activity associated with an RNA protein complex called telomerase. In most somatic cells, telomerase activity is insufficient, and telomere length decreases with increasing cell division, resulting in an irreversible cell growth arrest, termed cellular senescence. Cellular senescence is associated with an array of phenotypic changes suggestive of aging. Until recently, cellular senescence has largely been studied as an in-vitro phenomenon; however, there is accumulating evidence that indicates a critical role of telomere function in the pathogenesis of human atherosclerosis. This review attempts to summarize recent work in vascular biology that supports the "telomere hypothesis". We discuss the possible relevance of telomere function to vascular aging and the therapeutic potential of telomere manipulation. RECENT FINDINGS: It has been reported that many of the changes in senescent vascular cell behavior are consistent with known changes seen in age-related vascular diseases. Introduction of telomere malfunction has been shown to lead to endothelial dysfunction that promotes atherogenesis, whereas telomere lengthening extends cell lifespan and protects against endothelial dysfunction associated with senescence. Indeed, recent studies have demonstrated that telomere attrition and cellular senescence occur in the blood vessels and are associated with human atherosclerosis. SUMMARY: Recent findings suggest that vascular cell senescence induced by telomere shortening may contribute to atherogenesis and may provide insights into a novel treatment of antisenescence to prevent atherosclerosis.  相似文献   

2.
Lack of telomere shortening with age in mouse resting zone chondrocytes   总被引:1,自引:0,他引:1  
BACKGROUND AND AIM: Telomeres are hexameric repeat sequences that flank eukaryotic chromosomes. The telomere hypothesis of cellular aging proposes that replication of normal somatic cells leads to progressive telomere shortening which induces replicative senescence. Previous studies suggest that growth plate chondrocytes have a finite proliferative capacity in vivo. We therefore hypothesized that telomere shortening in resting zone chondrocytes leads to replicative senescence. METHOD: To test this hypothesis we compared the telomere restriction fragment (TRF) length of Mus casteneus at 1, 4, 8, and 56 weeks of age. RESULTS AND CONCLUSIONS: We found that TRF length did not diminish measurably with age, suggesting that telomere shortening in resting zone chondrocytes is not the mechanism that limits proliferation of growth plate chondrocytes in vivo.  相似文献   

3.
Human diploid fibroblast cells can divide for only a limited number of times in vitro, a phenomenon known as replicative senescence or the Hayflick limit. Variability in doubling potential is observed within a clone of cells, and between two sister cells arising from a single mitotic division. This strongly suggests that the process by which cells become senescent is intrinsically stochastic. Among the various biochemical mechanisms that have been proposed to explain replicative senescence, particular interest has been focussed on the role of telomere reduction. In the absence of telomerase--an enzyme switched off in normal diploid fibro-blasts-cells lose telomeric DNA at each cell division. According to the telomere hypothesis of cell senescence, cells eventually reach a critically short telomere length and cell cycle arrest follows. In support of this concept, forced expression of telomerase in normal fibroblasts appears to prevent cell senescence. Nevertheless, the telomere hypothesis in its basic form has some difficulty in explaining the marked stochastic variations seen in the replicative lifespans of individual cells within a culture, and there is strong empirical and theoretical support for the concept that other kinds of damage may contribute to cellular ageing. We describe a stochastic network model of cell senescence in which a primary role is played by telomere reduction but in which other mechanisms (oxidative stress linked particularly to mitochondrial damage, and nuclear somatic mutations) also contribute. The model gives simulation results that are in good agreement with published data on intra-clonal variability in cell doubling potential and permits an analysis of how the various elements of the stochastic network interact. Such integrative models may aid in developing new experimental approaches aimed at unravelling the intrinsic complexity of the mechanisms contributing to human cell ageing.  相似文献   

4.
In advanced age, increases in oxidative stress and inflammation impair endothelial function, which contributes to the development of cardiovascular disease (CVD). One plausible source of this oxidative stress and inflammation is an increase in the abundance of senescent endothelial cells. Cellular senescence is a cell cycle arrest that occurs in response to various damaging stimuli. In the present study, we tested the hypothesis that advanced age results in endothelial cell telomere dysfunction that induces senescence. In both human and mouse endothelial cells, advanced age resulted in an increased abundance of dysfunctional telomeres, characterized by activation of DNA damage signaling at telomeric DNA. To test whether this results in senescence, we selectively reduced the telomere shelterin protein telomere repeat binding factor 2 (Trf2) from endothelial cells of young mice. Trf2 reduction increased endothelial cell telomere dysfunction and resulted in cellular senescence. Furthermore, induction of endothelial cell telomere dysfunction increased inflammatory signaling and oxidative stress, resulting in impairments in endothelial function. Finally, we demonstrate that endothelial cell telomere dysfunction-induced senescence impairs glucose tolerance. This likely occurs through increases in inflammatory signaling in the liver and adipose tissue, as well as reductions in microvascular density and vasodilation to metabolic stimuli. Cumulatively, the findings of the present study identify age-related telomere dysfunction as a mechanism that leads to endothelial cell senescence. Furthermore, these data provide compelling evidence that senescent endothelial cells contribute to age-related increases in oxidative stress and inflammation that impair arterial and metabolic function.  相似文献   

5.
Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex.  相似文献   

6.
Normal cells in culture display a limited capacity to divide and reach a non-proliferative state called cellular senescence. Spontaneous escape from senescence resulting in an indefinite life span is an exceptionally rare event for normal human cells and viral oncoproteins have been shown to extend the replicative life span but not to immortalize them. Telomere shortening has been proposed as a mitotic clock that regulates cellular senescence. Telomerase is capable of synthesizing telomere repeats onto chromosome ends to block telomere shortening and to maintain human fibroblasts in proliferation beyond their usual life span. However, the consequence of telomerase expression on the life span of human myoblasts and on their differentiation is unknown. In this study, the telomerase gene and the puromycin resistance gene were introduced into human satellite cells, which are the natural muscle precursors (myoblasts) in the adult and therefore, a target for cell-mediated gene therapy. Satellite cells expressing telomerase were selected, and the effects of the expression of the telomerase gene on proliferation, telomere length, and differentiation were investigated. Our results show that the telomerase-expressing cells are able to differentiate and to form multinucleated myotubes expressing mature muscle markers and do not form tumors in vivo. We also demonstrated that the expression of hTERT can extend the replicative life of muscle cells although these failed to undergo immortalization.  相似文献   

7.
8.
9.
The loss of telomere repeats has been causally linked to in vitro replicative senescence of human diploid fibroblasts (HDFs). In order to study the mechanism(s) by which telomere shortening signals cell senescence, we analyzed the telomere length at specific chromosome ends at cumulative population doublings in polyclonal and clonal HDFs by quantitative fluorescence in situ hybridization. The rate of telomere shortening at individual telomeres varied between 50 and 150 bp per population doubling and short telomeres with an estimated 1-2 kb of telomere repeats accumulated prior to senescence. The average telomere length in specific chromosome ends was remarkably similar between clones. However, some exceptions with individual telomeres measuring 0.5-1 kb were observed. In the fibroblast clones, the onset of replicative senescence was significantly correlated with the mean telomere fluorescence but, strikingly, not with chromosomes with the shortest telomere length. The accumulation of short telomeres in late passages of cultured HDFs is compatible with selection of cells on the basis of telomere length and limited recombination between telomeres prior to senescence.  相似文献   

10.
Ji  Guangzhen  Liu  Kai  Okuka  Maja  Liu  Na  Liu  Lin 《BMC cell biology》2012,13(1):1-11
Telomeres are essential for the maintenance of genomic stability, and telomere dysfunction leads to cellular senescence, carcinogenesis, aging, and age-related diseases in humans. Pigs have become increasingly important large animal models for preclinical tests and study of human diseases, and also may provide xeno-transplantation sources. Thus far, Southern blot analysis has been used to estimate average telomere lengths in pigs. Telomere quantitative fluorescence in situ hybridization (Q-FISH), however, can reveal status of individual telomeres in fewer cells, in addition to quantifying relative telomere lengths, and has been commonly used for study of telomere function of mouse and human cells. We attempted to investigate telomere characteristics of porcine cells using telomere Q-FISH method. The average telomere lengths in porcine cells measured by Q-FISH correlated with those of quantitative real-time PCR method (qPCR) or telomere restriction fragments (TRFs) by Southern blot analysis. Unexpectedly, we found that porcine cells exhibited high incidence of telomere doublets revealed by Q-FISH method, coincided with increased frequency of cellular senescence. Also, telomeres shortened during subculture of various porcine primary cell types. Interestingly, the high frequency of porcine telomere doublets and telomere loss was associated with telomere dysfunction-induced foci (TIFs). The incidence of TIFs, telomere doublets and telomere loss increased with telomere shortening and cellular senescence during subculture. Q-FISH method using telomere PNA probe is particularly useful for characterization of porcine telomeres. Porcine cells exhibit high frequency of telomere instability and are susceptible to telomere damage and replicative senescence.  相似文献   

11.
It has been a decade since the first surprising discovery that longer telomeres in humans are statistically associated with longer life expectancies. Since then, it has been firmly established that telomere shortening imposes an individual fitness cost in a number of mammalian species, including humans. But telomere shortening is easily avoided by application of telomerase, an enzyme which is coded into nearly every eukaryotic genome, but whose expression is suppressed most of the time. This raises the question how the sequestration of telomerase might have evolved. The predominant assumption is that in higher organisms, shortening telomeres provide a firewall against tumor growth. A more straightforward interpretation is that telomere attrition provides an aging clock, reliably programming lifespans. The latter hypothesis is routinely rejected by most biologists because the benefit of programmed lifespan applies only to the community, and in fact the individual pays a substantial fitness cost. There is a long-standing skepticism that the concept of fitness can be applied on a communal level, and of group selection in general. But the cancer hypothesis is problematic as well. Animal studies indicate that there is a net fitness cost in sequestration of telomerase, even when cancer risk is lowered. The hypothesis of protection against cancer has never been tested in animals that actually limit telomerase expression, but only in mice, whose lifespans are not telomerase-limited. And human medical evidence suggests a net aggravation of cancer risk from the sequestration of telomerase, because cells with short telomeres are at high risk of neoplastic transformation, and they also secrete cytokines that exacerbate inflammation globally. The aging clock hypothesis fits well with what is known about ancestral origins of telomerase sequestration, and the prejudices concerning group selection are without merit. If telomeres are an aging clock, then telomerase makes an attractive target for medical technologies that seek to expand the human life- and health-spans.  相似文献   

12.
Cellular senescence is a major defense against cancer. In human fibroblasts, suppressing both the p53 and pRb pathways is necessary to bypass replicative senescence as well as senescence induced by ectopic expression of a dominant negative form of the telomere repeat binding factor 2, TRF2(DN). We recently reported that exposure to oligonucleotides homologous to the telomere 3' overhang (T-oligos) activates both the p53 and pRb pathways and leads to senescence in primary human fibroblasts. To further characterize T-oligo-induced senescence, we compared established isogenic fibroblast cell lines lacking functional p53 and/or pRb pathways to the normal parental line. Here, we report that, as in physiologic senescence, inactivation of both the p53 and pRb pathways is necessary to suppress T-oligo-induced senescence. Moreover, T-oligo rapidly induces senescence in a malignant fibroblast-derived cell line, demonstrating the potential of using T-oligo as a novel anticancer therapeutic. Our data support the hypothesis that exposure of the TTAGGG tandem repeat telomere 3' overhang sequence is the event that initiates signaling through DNA damage response pathways after experimental telomere disruption, serial passage, or acute genomic damage of normal cells.  相似文献   

13.
Direct experimental evidence implicates telomere erosion as a primary cause of cellular senescence. Using a well characterized model system for breast cancer, we define here the molecular and cellular consequences of adriamycin treatment in breast tumor cells. Cells acutely exposed to adriamycin exhibited an increase in p53 activity, a decline in telomerase activity, and a dramatic increase in beta-galactosidase, a marker of senescence. Inactivation of wild-type p53 resulted in a transition of the cellular response to adriamycin treatment from replicative senescence to delayed apoptosis, demonstrating that p53 plays an integral role in the fate of breast tumor cells treated with DNA-damaging agents. Stable introduction of hTERT, the catalytic protein component of telomerase, into MCF-7 cells caused an increase in telomerase activity and telomere length. Treatment of MCF-7-hTERT cells with adriamycin produced an identical senescence response as controls without signs of telomere shortening, indicating that the senescence after treatment is telomere length-independent. However, we found that exposure to adriamycin resulted in an overrepresentation of cytogenetic changes involving telomeres, showing an altered telomere state induced by adriamycin is probably a causal factor leading to the senescence phenotype. To our knowledge, these data are the first to demonstrate that the mechanism of adriamycin-induced senescence is dependent on both functional p53 and telomere dysfunction rather than overall shortening.  相似文献   

14.
Animals and plants have biological clocks that help to regulate circadian cycles, seasonal rhythms, growth, development, and sexual maturity. It is reasonable to suspect that the timing of senescence is also influenced by one or more biological clocks. Evolutionary reasoning first articulated by G. Williams suggests that multiple, redundant clocks might influence organismal aging. Some aging clocks that have been proposed include the suprachiasmatic nucleus, the hypothalamus, involution of the thymus, and cellular senescence. Cellular senescence, mediated by telomere attrition, is in a class by itself, having recently been validated as a primary regulator of aging. Gene expression is known to change in characteristic ways with age, and in particular DNA methylation changes in age-related ways. Herein, I propose a new candidate for an aging clock, based on epigenetics and the state of chromosome methylation, particularly in stem cells. If validated, this mechanism would present a challenging target for medical intervention.  相似文献   

15.
Modelling cellular senescence as a result of telomere state   总被引:3,自引:0,他引:3  
Telomeres in mammalian cells end in large duplex T loops. These loops protect the single-strand overhangs from degradation and/or interactions with signalling proteins. This protection is sometimes referred to as capping. At each cell division, telomeres shorten and there is a general consensus that telomere shortening triggers cell cycle exit. However, the exact mechanism by which telomere shortening causes cell cycle arrest is not known. Mathematical models of telomere shortening have been developed to help us understand the processes involved. Until now most models have assumed that the trigger for cell cycle arrest is the first telomere or a group of telomeres reaching a critically short length. However, there is evidence that cells stop cycling over a wide range of telomere lengths. This suggests that telomere length per se may not in fact be the trigger for cellular senescence. In this paper we develop a model which examines the hypothesis that uncapping of a telomere is the main trigger. By letting the probability of uncapping depend upon telomere length, we show that the hypothesized model provides a good fit to experimental data.  相似文献   

16.
《FEBS letters》2014,588(23):4369-4374
Telomeres are specialized structures protecting chromosomes against genome instability. Telomeres shorten with cell division, and replicative senescence is induced when telomeres are badly eroded. Whereas TRF2 (telomeric-repeat binding factor 2), ATM (ataxia telangiectasia mutated) and p53 have been identified involved in senescence induction, how it is triggered remains unclear. Here, we propose an integrated model associating telomere loss with senescence trigger. We characterize the dynamics of telomere shorting and the p53-centered regulatory network. We show that senescence is initiated in a switch-like manner when both the shortest telomere becomes uncapped and the TRF2-ATM-p53-Siah1 positive feedback loop is switched on. This work provides a coherent picture of senescence induction in terms of telomere shortening and p53 activation.  相似文献   

17.
端粒和端粒酶与衰老研究   总被引:1,自引:0,他引:1  
衰老是一种多因素的复合调控过程,表现为染色体端粒长度的改变、DNA损伤、DNA的甲基化和细胞的氧化损伤等,并已形成了许多学说,而端粒学说成为衰老研究的热点之一.对与衰老紧密相关的因素———端粒、端粒酶的结构及其与衰老关系的研究进展进行综述,阐明对端粒—端粒酶的作用将会在抗衰老方面有着十分重要的理论价值及实际意义.  相似文献   

18.
Increasing evidence indicates that replicative senescence and premature endothelial senescence could contribute to endothelial dysfunction. This study aims at testing the hypothesis that a high-fat diet may lead to premature vascular endothelial senescence in a nonhuman primate model. We isolated endothelial cells from left and right femoral arteries in 10 baboons before and after a 7-wk high-fat dietary treatment. We compared the morphological alterations, replicative capacities, and senescence-associated beta-galactosidase activities (SA-beta-gal) at these two time points. We found that high-fat diet increased the prevalence of endothelial senescence. Endothelial replicative capacities declined dramatically, and SA-beta-gal activities increased significantly in postdietary challenge. There was no change in telomeric length using quantitative flow fluorescence in situ hybridization analysis, suggesting that some stressors lead to cell senescence independent of telomere dysfunction. Our findings that high-fat diet causes endothelial damage through the premature senescence suggest a novel mechanism for the diet-induced endothelial dysfunction.  相似文献   

19.
Cells subjected to sub-lethal doses of stress such as irradiation or oxidative damage enter a state that closely resembles replicative senescence. What triggers stress-induced premature senescence (SIPS) and how similar this mechanism is to replicative senescence are not well understood. It has been suggested that stress-induced senescence is caused by rapid telomere shortening resulting from DNA damage. In order to test this hypothesis directly, we examined whether overexpression of the catalytic subunit of human telomerase (hTERT) can protect cells from SIPS. We therefore analyzed the response of four different lines of normal human fibroblasts with and without hTERT to stress induced by UV, gamma-irradiation, and H(2)O(2). SIPS was induced with the same efficiency in normal and hTERT-immortalized cells. This suggests that SIPS is not triggered by telomere shortening and that nonspecific DNA damage serves as a signal for induction of SIPS. Although telomerase did not protect cells from SIPS, fibroblasts expressing hTERT were more resistant to stress-induced apoptosis and necrosis. We hypothesize that healing of DNA breaks by telomerase inhibits the induction of cell death, but because healing does not provide legitimate DNA repair, it does not protect cells from SIPS.  相似文献   

20.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号