首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between matrix volume and the amount of light scattered by a mitochondrial suspension has been characterized for equilibrium measurements and shown to depend in a complex but predictable manner on native structure of the mitochondrion (Beavis, A. D., Brannan, R. D., and Garlid, K. D. (1985) J. Biol. Chem. 260, 13424-13433). In the present report, we show that this characterization also applies to kinetic measurements of salt and nonelectrolyte transport. We derive and evaluate quantitative methods for determining permeability constants from light scattering kinetics. We apply these equations to the problem of whether matrix swelling itself induces permeability changes secondary to membrane stretching or changes in surface available for transport. A study of erythritol transport over a 7-fold range of matrix volume reveals dramatic changes in light scattering rates, as previously observed (Tedeschi, H. (1959) J. Biophys. Biochem. Cytol. 6, 241-252). These transitions correspond exactly to structure-dependent transitions in the relationship between absorbance and matrix volume. When this is taken into account, erythritol permeability is found to be constant over the entire volume range. Factors affecting intrinsic membrane porters, such as Mg2+ depletion and dicyclohexylcarbodiimide, are also found to be without effect on erythritol permeability. The broader significance of this study is that the light scattering technique is shown to be capable of providing quantitative answers to important questions about solute transport across the inner membrane.  相似文献   

2.
Regulation of mitochondrial matrix volume   总被引:2,自引:0,他引:2  
Mitochondrial volume homeostasis is a housekeeping cellular function essential for maintaining the structural integrity of the organelle. Changes in mitochondrial volume have been associated with a wide range of important biological functions and pathologies. Mitochondrial matrix volume is controlled by osmotic balance between cytosol and mitochondria. Any dysbalance in the fluxes of the main intracellular ion, potassium, will thus affect the osmotic balance between cytosol and the matrix and promote the water movement between these two compartments. It has been hypothesized that activity of potassium efflux pathways exceeds the potassium influx in functioning mitochondria and that potassium concentration in matrix could be actually lower than in cytoplasm. This hypothesis provides a clear-cut explanation for the mitochondrial swelling observed after mitochondrial depolarization, mitochondrial calcium overload, or opening of permeability transition pore. It should also be noted that the rate of water flux into or out of the mitochondrion is determined not only by the osmotic gradient that acts as the driving force for water transport but also by the water permeability of the inner membrane. Recent data suggest that the mitochondrial inner membrane has also specific water channels, aquaporins, which facilitate water movement between cytoplasm and matrix. This review discusses different phases of mitochondrial swelling and summarizes the potential effects of mitochondrial swelling on cell function. potassium homeostasis; depolarization; mitochondrial swelling  相似文献   

3.
The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.  相似文献   

4.
The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.  相似文献   

5.
Suspensions of mitochondria are turbid and scatter light. An increase in the matrix volume (swelling) due to the influx of permeable solutes results in a decrease in the amount of light scattered. This property can be used to study solute fluxes across the mitochondrial inner membrane. A rapid method for isolating mitochondria is presented along with three swelling experiments using energized and non-energized mitochondria to illustrate ion transport across energy transducing membranes.  相似文献   

6.
Studies on mitochondria protein import had revealed in detail molecular mechanisms of how peptides and proteins could be selectively targeted and translocated across membrane bound organelles. The opposite process of mitochondrial export, while known to occur in various aspects of cellular physiology and pathology, is less well understood. Two very recent reports have indicated that a large mitochondrial matrix protein complex, the pyruvate dehydrogenase complex (PDC) (or its component subunits), could be exported to the lysosomes and the nucleus, respectively. In the case of the latter, evidence was presented to suggest that the entire complex of 8–10 MDa could translocate in its entirety from the mitochondrial matrix to the nucleus upon mitogenic or stress stimuli. We discuss these findings in perspective to what is currently known about the processes of transport in and out of the mitochondrion.  相似文献   

7.
The fine structure of mitochondria and mitochondrial nucleoids in exponentially growing Physarum polycephalum was studied at various periods throughout the mitochondrial division cycle by light and electron microscopy. The mitochondrial nucleoid elongates lingitudinally while the mitochondrion increases in size. When the nucleoid reaches a length of approximately 1.5 mum the mitochondrial membrane invaginates at the center of the mitochondrion and separates the mitochondrial contents. However, the nucleoid does not divide even when the mitochondrial sections are connected by a very narrow bridge. Just before division of the mitochondrion, the nucleoid divides by constriction of the limiting membrane of the dividing mitochondrion. After division, one end of the nucleoid appears to be associated with the inner mitochondrial membrane. The nucleoid then again becomes situated in the center of the mitochondrion before repeating these same processes.  相似文献   

8.
The high-amplitude swelling of mitochondria is critically considered. In contrast to numerous statements by some authors about a marked swelling of isolated liver mitochondria under the influence of palmitic acid, calcium ions, or hypotension, we have shown that mitochondria are generally not subject to highamplitude swelling. According to optical-microscopy data even during long-lasting incubation (in distilled water) where full hypotension takes place, the size of liver mitochondria (approximately 1 µm) can be enlarged by no more than by 40%. Under short-lasting hypotension or the addition of palmitic acid the mitochondrial diameter becomes greater by only 20% or remains virtually unchanged. The light scattering of the mitochondrial suspension measured using a photometer according to the decrease in optical density declines by 2.5 times. A decrease in the light scattering in hypotension or via the addition of palmitic acid or calcium (in an isotonic medium) occurs because of damage (even destruction) to the outer membrane, rather than due to the swelling of mitochondria, as was previously believed. The inner membrane is not significantly expanded. The destruction of the outer membrane reduces the probability of light scattering by each mitochondrion at the boundary layer of the water/membrane interface. Release of substances from the matrix resulting in a decrease of its refractive index may additionally contribute to the decrease in light scattering. Palmitic acid and calcium (at concentrations of 10 to 100 µM) cause permeabilization and disruption of the outer membrane gradually, over several minutes. Full hypotension activates this process very rapidly, viz., within a fraction of a second. Under low ionic-strength conditions, the addition of calcium leads to neutralization of negative charges on the membrane surface, which induces aggregation of mitochondria, thus enhancing light scattering and creating the illusion of mitochondrial swelling.  相似文献   

9.
Endonuclease G, a protein historically thought to be involved in mitochondrial DNA (mtDNA) replication, repair, recombination and degradation, has recently been reported to be involved in nuclear DNA degradation during the apoptotic process. As a result, its involvement in mtDNA homeostasis has been called into question and has necessitated detailed analyses of its precise location within the mitochondrion. Data is presented localizing rat liver endonuclease G activity exclusively to the mitochondrial intermembrane space with no activity associated with either the interior face of the inner mitochondrial membrane or with the mitochondrial matrix. Additionally, it is shown that endonuclease G can be selectively released from the mitochondrion via induction of a Ca2+-induced mitochondrial permeability transition and that, upon its release, a further nuclease activity loosely associated with the interior face of the inner mitochondrial membrane and distinct in its properties from that of endonuclease G can be detected.  相似文献   

10.
Oxidation of exogenous NADH by isolated rat liver mitochondria is generally accepted to be mediated by endogenous cytochrome c which shuttles electrons from the outer to the inner mitochondrial membrane. More recently it has been suggested that, in the presence of added cytochrome c, NADH oxidation is carried out exclusively by the cytochrome oxidase of broken or damaged mitochondria. Here we show that electrons can be transferred in and out of intact mitochondria. It is proposed that at the contact sites between the inner and the outer membrane, a "bi-trans-membrane" electron transport chain is present. The pathway, consisting of Complex III, NADH-b5 reductase, exogenous cytochrome c and cytochrome oxidase, can channel electrons from the external face of the outer membrane to the matrix face of the inner membrane and viceversa. The activity of the pathway is strictly dependent on both the activity of the respiratory chain and mitochondrion integrity.  相似文献   

11.
We report the first lateral diffusion measurements of redox components in normal-sized, matrix-containing, intact mitoplasts (inner membrane-matrix particles). The diffusion measurements were obtained by submicron beam fluorescence recovery after photobleaching measurements of individual, intact, rat liver mitoplasts bathed in different osmolarity media to control the matrix density and the extent of inner membrane folding. The data reveal that neither the extent of mitochondrial matrix density nor the complexity of the inner membrane folding have a significant effect on the mobility of inner membrane redox components. Diffusion coefficients for Complex I (NADH:ubiquinone oxidoreductase), Complex III (ubiquinol: cytochrome c oxidoreductase), Complex IV (cytochrome oxidase), ubiquinone, and phospholipid were found to be effectively invariant with the matrix density and/or membrane folding and essentially the same as values we reported previously for spherical, fused, ultralarge, matrix-free, inner membranes. Diffusion of proton-transporting Complex V (ATP synthase) appeared to be 2-3-fold slower at the greatest matrix density and degree of membrane folding. Consistent with a diffusion-coupled mechanism of electron transport, comparison of electron transport frequencies (productive collisions) with the theoretical, diffusion-controlled, collision frequencies (maximum collisions possible) revealed that there were consistently more calculated than productive collisions for all redox partners. Theoretical analyses of parameters for submicron fluorescence recovery after photobleaching measurements in intact mitoplasts support the finding of highly mobile redox components diffusing at the same rates as determined in conventional fluorescence recovery after photobleaching measurements in fused, ultralarge inner membranes. These findings support the Random Collision Model of Mitochondrial Electron Transport at the level of the intact mitoplast and suggest a similar conclusion for the intact mitochondrion.  相似文献   

12.
The transformation of Trypanosoma brucei bloodstream forms to procyclic culture forms in the semidefined medium SDM-77 has been studied by light microscopy and quantitative electron microscopy. Stumpy and intermediate forms are able to transform to culture forms whereas slender forms die after approximately 24 hr. The surface coat and infectivity for the mammalian host are lost after 72 hr. Morphometrical analysis of the cells during transformation process revealed: (1) The cytoplasm and the cell surface increased significantly; (2) the volume density of the mitochondrion increased twofold and the surface density of the inner mitochondrial membrane increased threefold; (3) the volume density of the glycosomes remained about constant; (4) the volume density of the lipid inclusions increased up to 72 hr, probably as a result of the complete oxidation of glucose. Transformation as observed by light microscopy was completed in 72 hr. However, quantitative electron microscopy revealed that establishment of the culture form was incomplete even after 11 days.  相似文献   

13.
Anoxic incubation of isolated small pieces of cardiac tissue for 72 h caused emergence of an unusual population of mitochondria, referred to as "mitochondrion inside mitochondrion". We studied dynamics of the origin of this event. In the most part of a mitochondrial population after a 6 h anoxic incubation of myocardial tissue, a local increase in some region of the intermembrane space was observed. Some regions of matrix with adjoined inner membrane move into these regions of intermembrane space, to be constricted eventually. After 12 h of incubation densely neighbouring layers of membrane are observed in these structures. By 24 h of incubation, inside new-formed structures well-distinguished concentric layers of membrane appear. Between these layers some electron-dense material ultrastructurally identical to mitochondrial matrix is seen. By 72 h of anoxic incubation, in cardiomyocytes of the experimental tissue structures with well-marked morphological features of mitochondria appear, which we called "mitochondrion inside mitochondrion". Results of our study are discussed in terms of a conception of changes that occur in the structure of mitochondrial reticulum during apoptosis.  相似文献   

14.
We present a computational model of mitochondrial deoxynucleotide metabolism and mitochondrial DNA (mtDNA) synthesis. The model includes the transport of deoxynucleosides and deoxynucleotides into the mitochondrial matrix space, as well as their phosphorylation and polymerization into mtDNA. Different simulated cell types (cancer, rapidly dividing, slowly dividing, and postmitotic cells) are represented in this model by different cytoplasmic deoxynucleotide concentrations. We calculated the changes in deoxynucleotide concentrations within the mitochondrion during the course of a mtDNA replication event and the time required for mtDNA replication in the different cell types. On the basis of the model, we define three steady states of mitochondrial deoxynucleotide metabolism: the phosphorylating state (the net import of deoxynucleosides and export of phosphorylated deoxynucleotides), the desphosphorylating state (the reverse of the phosphorylating state), and the efficient state (the net import of both deoxynucleosides and deoxynucleotides). We present five testable hypotheses based on this simulation. First, the deoxynucleotide pools within a mitochondrion are sufficient to support only a small fraction of even a single mtDNA replication event. Second, the mtDNA replication time in postmitotic cells is much longer than that in rapidly dividing cells. Third, mitochondria in dividing cells are net sinks of cytoplasmic deoxynucleotides, while mitochondria in postmitotic cells are net sources. Fourth, the deoxynucleotide carrier exerts the most control over the mtDNA replication rate in rapidly dividing cells, but in postmitotic cells, the NDPK and TK2 enzymes have the most control. Fifth, following from the previous hypothesis, rapidly dividing cells derive almost all of their mtDNA precursors from the cytoplasmic deoxynucleotides, not from phosphorylation within the mitochondrion. simulation; nucleotide phosphorylation; nucleoside transport; mitochondrial DNA  相似文献   

15.
Equations for the transport of solutes through a membrane are derived, taking into account both the membrane volume and the partitioning kinetics, and have been found to involve two rate constants for solute transport, namely, those corresponding to solute transport from the solution to the membrane (k1) and from the membrane to the solution (k2). The time course followed before partitioning equilibrium has been attained, which is usually ignored, is shown to depend strongly on the relative magnitudes of k1 and k2.  相似文献   

16.
Nucleus-encoded tRNAs are selectively imported into the mitochondrion of Leishmania, a kinetoplastid protozoan. An oligoribonucleotide constituting the D stem-loop import signal of tRNA(Tyr)(GUA) was efficiently transported into the mitochondrial matrix in organello as well as in vivo. Transfer through the inner membrane could be uncoupled from that through the outer membrane and was resistant to antibody against the outer membrane receptor TAB. A number of mutations in the import signal had differential effects on outer and inner membrane transfer. Some mutants which efficiently traversed the outer membrane were unable to enter the matrix. Conversely, restoration of the loop-closing GC pair in reverse resulted in reversion of transfer through the inner, but not the outer, membrane, and binding of the RNA to the inner membrane was restored. These experiments indicate the presence at the two membranes of receptors with distinct specificities which mediate stepwise transfer into the mitochondrial matrix. The combination of oligonucleotide mutagenesis and biochemical fractionation may provide a general tool for the identification of tRNA transport factors.  相似文献   

17.
Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide did not need to be exported or to cycle across the inner membrane to cause uncoupling. We conclude that superoxide (or its products) exerts its uncoupling effect by activating the proton transport mechanism of uncoupling proteins at the matrix side of the mitochondrial inner membrane.  相似文献   

18.
Because of its importance in the chemiosmotic theory, mitochondrial membrane potential has been the object of many investigations. Significantly, however, quantitative data on how energy transduction might be regulated or perturbed by the physiological state of the cell has only been gathered via indirect studies on isolated mitochondrial suspensions; quantitative studies on individual mitochondria in situ have not been possible because of their small size, their intrinsic motility, and the absence of appropriate analytical reagents. In this article, we combine techniques for rapid, high resolution, quantitative three-dimensional imaging microscopy and mathematical modeling to determine accurate distributions of a potentiometric fluorescent probe between the cytosol and individual mitochondria inside a living cell. Analysis of this distribution via the Nernst equation permits assignment of potentials to each of the imaged mitochondrial membranes. The mitochondrial membrane potentials are distributed over a narrow range centered at -150 mV within the neurites of differentiated neuroblastoma cells. We find that the membrane potential of a single mitochondrion is generally remarkably stable over times of 40-80 s, but significant fluctuations can occasionally be seen. The motility of individual mitochondria is not directly correlated to membrane potential, but mitochondria do become immobile after prolonged treatment with respiratory inhibitors or uncouplers. Thus, three spatial dimensions, a key physiological parameter, and their changes over time are all quantitated for objects at the resolution limit of light microscopy. The methods described may be readily extended to permit investigations of how mitochondrial function is integrated with other processes in the intact cell.  相似文献   

19.
An abnormally high apoptosis has been associated with a number of clinical conditions including embryonal malformations and various pathologies such as neuronal degeneration and diabetes. In this study, boron is reported to inhibit apoptosis in hyperapoptosis conditions as demonstrated in a model of hyperapoptosis. Boron is a metalloid which is present in food in small amounts and is suggested here to inhibit apoptosis by stabilizing the mitochondrial membrane structure, thus preventing matrix remodeling and the release of cytochrome c, an apoptosis-inducer protein from the mitochondrion. The protective effect was assessed by measuring the changes in mitochondrial membrane potential, the levels of cytochrome c and downstream activation of caspase 3, besides phosphatidylserine exposure on the cell surface and DNA damage. The study has implication in clinical conditions characterized by hyperapoptosis as seen in certain embryonal malformations and various pathologies.  相似文献   

20.
The mitochondrial permeability transition pore (mtPTP) is a non specific channel that forms in the inner mitochondrial membrane to transport solutes with a molecular mass smaller than 1.5 kDa. Although the definitive molecular identity of the pore is still under debate, proteins such as cyclophilin D, VDAC and ANT contribute to mtPTP formation. While the involvement of mtPTP opening in cell death is well established1, accumulating evidence indicates that the mtPTP serves a physiologic role during mitochondrial Ca2+ homeostasis2, bioenergetics and redox signaling 3.mtPTP opening is triggered by matrix Ca2+ but its activity can be modulated by several other factors such as oxidative stress, adenine nucleotide depletion, high concentrations of Pi, mitochondrial membrane depolarization or uncoupling, and long chain fatty acids4. In vitro, mtPTP opening can be achieved by increasing Ca2+ concentration inside the mitochondrial matrix through exogenous additions of Ca2+ (calcium retention capacity). When Ca2+ levels inside mitochondria reach a certain threshold, the mtPTP opens and facilitates Ca2+ release, dissipation of the proton motive force, membrane potential collapse and an increase in mitochondrial matrix volume (swelling) that ultimately leads to the rupture of the outer mitochondrial membrane and irreversible loss of organelle function.Here we describe a fluorometric assay that allows for a comprehensive characterization of mtPTP opening in isolated mouse heart mitochondria. The assay involves the simultaneous measurement of 3 mitochondrial parameters that are altered when mtPTP opening occurs: mitochondrial Ca2+ handling (uptake and release, as measured by Ca2+ concentration in the assay medium), mitochondrial membrane potential, and mitochondrial volume. The dyes employed for Ca2+ measurement in the assay medium and mitochondrial membrane potential are Fura FF, a membrane impermeant, ratiometric indicator which undergoes a shift in the excitation wavelength in the presence of Ca2+, and JC-1, a cationic, ratiometric indicator which forms green monomers or red aggregates at low and high membrane potential, respectively. Changes in mitochondrial volume are measured by recording light scattering by the mitochondrial suspension. Since high-quality, functional mitochondria are required for the mtPTP opening assay, we also describe the steps necessary to obtain intact, highly coupled and functional isolated heart mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号