首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The karyotype of diploid Aster iinumae is morphologically similar to that of diploid Aster ageratoides var. ageratoides, however, its chromosome size is apparently smaller (S-type chromosomes versus L-type chromosomes, respectively). The hybrid origin of tetraploid Aster microcephalus var. ovatus (LS-type chromosomes) has previously been suggested by cytogenetics and chloroplast DNA (cp DNA) data. The cp DNA phylogeny also implies that the S-type chromosome is apomorphic, which means that genome size reduction occurred on the evolutionary way to A. iinumae. In this study, we have demonstrated that the chromosome size difference does not depend on the intensity of chromosome condensation but on the DNA content. The simultaneous genomic in situ hybridization (GISH) results show the similarity between S-type chromosomes of A. iinumae and A. microcephalus var. ovatus, and between L-type chromosomes of A. ageratoides and A. microcephalus var. ovatus, which provide additional evidence for A. microcephalus var. ovatus being a tetraploid amphidiploid produced by hybridization between S-type chromosomes and L-type chromosomes. The distribution patterns of Ty1-copia-like retrotransposons were similar in L- and S-type chromosomes. The copies of this retrotransposon dispersed uniformly on all chromosomes, and it is not yet apparent how the Ty1-copia-like retrotransposon affects the size difference between them.  相似文献   

2.
3.
In most filamentous fungi, telomere-associated sequences (TASs) are polymorphic, and the presence of restriction fragment length polymorphisms (RFLPs) may permit the number of chromosome ends to be estimated from the number of telomeric bands obtained by restriction digestion. Here, we describe strains of Metarhizium, Gliocladium and Paecilomyces species in which only one or a few telomeric bands of unequal intensity are detectable by Southern hybridization, indicating that interchromosomal TAS exchange occurs. We also studied an anomalous strain of Metarhizium anisopliae, which produces polymorphic telomeric bands larger than 8 kb upon digestion of genomic DNA with XhoI. In this case, the first XhoI site in from the chromosome end must lie beyond the presumed monomorphic region. Cloned telomeres from this strain comprise 18–26 TTAGGG repeats, followed at the internal end of the telomere tract by five repeats of the telomere-like sequence TAAACGCTGG. An 8.1-kb TAS clone also contains a gene for a RecQ-like helicase, designated TAH1, suggesting that this TAS is analogous to the Y elements in yeast and the subtelomeric helicase ORFs of Ustilago maydis (UTASRecQ) and Magnaporthe grisea (TLH1). The TAS in the anomalous strain of M. anisopliae, however, appears distinct from these in that it is found at most telomeres and its predicted protein product possesses a significantly longer N-terminal region in comparison to the M. grisea and U. maydis helicases. Hybridization analyses showed that TAH1 homologues are present in all other anomalous M. anisopliae strains studied, as well as in some other polymorphic strains, where the recQ-like gene also appears to be telomere-associated.  相似文献   

4.
We have investigated the organisation, nucleotide sequence, and chromosomal distribution of a tandemly repeated, satellite DNA from Allium cepa (Liliaceae). The satellite, which constitutes about 4% of the A. cepa genome, may be resolved from main-band DNA in antibiotic-CsCl density gradients, and has a repeat length of about 375 base pairs (bp). A cloned member of the repeat family hybridises exclusively to chromosome telomeres and has a non-random distribution in interphase nuclei. We present the nucleotide sequences of three repeats, which differ at a large number of positions. In addition to arrays made up of 375-bp repeats, homologous sequences are found in units with a greater repeat length. This divergence between repeats reflects the heterogeneity of the satellite determined using other criteria. Possible constraints on the interchromosomal exchange of repeated sequences are discussed.  相似文献   

5.
We previously characterized a female-specific randomly amplified polymorphic DNA (RAPD), designated W-Kabuki, derived from the W chromosome of the silkworm, Bombyx mori. To further analyze the W chromosome of B. mori, we obtained a lambda phage clone which contains the W-Kabuki RAPD sequence and sequenced the 18.1-kb DNA insert. We found that this DNA comprises a nested structure of at least seven elements; three retrotransposons, two retroposons, one functionally unknown insertion, and one Bombyx repetitive sequence. The non-LTR retrotransposon BMC1, the retroposon Bm1, a functionally unknown inserted DNA (FUI), and a copia-like LTR retrotransposon (Yokozuna) are themselves inserted into a novel gypsy-Ty3-like LTR retrotransposon, named Kabuki. Furthermore, this Kabuki element is itself inserted into another copy of Bm1. The BMC1 and Yokozuna elements inserted in the Kabuki sequence are intact. Moreover, the Kabuki element is largely intact. These results suggest that many retrotransposable elements have accumulated on the W chromosome, and these elements are expected to evolve more slowly than those on other chromosomes. Received: 7 October 1999 / Accepted: 14 April 2000  相似文献   

6.

Inbreeding can have negative effects on survival and reproduction, which may be of conservation concern in small and isolated populations. However, the physiological mechanisms underlying inbreeding depression are not well-known. The length of telomeres, the DNA sequences protecting chromosome ends, has been associated with health or fitness in several species. We investigated effects of inbreeding on early-life telomere length in two small island populations of wild house sparrows (Passer domesticus) known to be affected by inbreeding depression. Using genomic measures of inbreeding we found that inbred nestling house sparrows (n?=?371) have significantly shorter telomeres. Using pedigree-based estimates of inbreeding we found a tendency for inbred nestling house sparrows to have shorter telomeres (n?=?1195). This negative effect of inbreeding on telomere length may have been complemented by a heterosis effect resulting in longer telomeres in individuals that were less inbred than the population average. Furthermore, we found some evidence of stronger effects of inbreeding on telomere length in males than females. Thus, telomere length may reveal subtle costs of inbreeding in the wild and demonstrate a route by which inbreeding negatively impacts the physiological state of an organism already at early life-history stages.

  相似文献   

7.
In Drosophila, the non-LTR retrotransposons HeT-A, TART and TAHRE build a head-to-tail array of repetitions that constitute the telomere domain by targeted transposition at the end of the chromosome whenever needed. As a consequence, Drosophila telomeres have the peculiarity to harbor the genes in charge of telomere elongation. Understanding telomere expression is important in Drosophila since telomere homeostasis depends in part on the expression of this genomic compartment. We have recently shown that the essential kinase JIL-1 is the first positive regulator of the telomere retrotransposons. JIL-1 mediates chromatin changes at the promoter of the HeT-A retrotransposon that are necessary to obtain wild type levels of expression of these telomere transposons. With the present study, we show how JIL-1 is also needed for the expression of a reporter gene embedded in the telomere domain. Our analysis, using different reporter lines from the telomere and subtelomere domains of different chromosomes, indicates that JIL-1 likely acts protecting the telomere domain from the spreading of repressive chromatin from the adjacent subtelomere domain. Moreover, the analysis of the 4R telomere suggests a slightly different chromatin structure at this telomere. In summary, our results strongly suggest that the action of JIL-1 depends on which telomere domain, which chromosome and which promoter is embedded in the telomere chromatin.  相似文献   

8.
9.
We have isolated two yeast artificial chromosome (YAC) clones from Drosophila melanogaster that contain a small amount of dodeca satellite (a satellite DNA located in the centromeric region of chromosome 3) and sequences homologous to the telomeric retrotransposon HeT-A. Using these YACs as probes for fluorescence in situ hybridization to mitotic chromosomes, we have localized these HeT-A elements to the centric heterochromatin of chromosome 3, at region h55. The possible origin of these telomeric elements in a centromeric position is discussed. Received: 30 July 1999 / Accepted: 19 September 1999  相似文献   

10.
Aegilops tauschii (Coss.) Schmal. (2n=2x=14, DD) (syn. A. squarrosa L.; Triticum tauschii) is well known as the D-genome donor of bread wheat (T. aestivum, 2n=6x=42, AABBDD). Because of conserved synteny, a high-density map of the A. tauschii genome will be useful for breeding and genetics within the tribe Triticeae which besides bread wheat also includes barley and rye. We have placed 249 new loci onto a high-density integrated cytological and genetic map of A. tauschii for a total of 732 loci making it one of the most extensive maps produced to date for the Triticeae species. Of the mapped loci, 160 are defense-related genes. The retrotransposon marker system recently developed for cultivated barley (Hordeum vulgare L.) was successfully applied to A. tauschii with the placement of 80 retrotransposon loci onto the map. A total of 50 microsatellite and ISSR loci were also added. Most of the retrotransposon loci, resistance (R), and defense-response (DR) genes are organized into clusters: retrotransposon clusters in the pericentromeric regions, R and DR gene clusters in distal/telomeric regions. Markers are non-randomly distributed with low density in the pericentromeric regions and marker clusters in the distal regions. A significant correlation between the physical density of markers (number of markers mapped to the chromosome segment/physical length of the same segment in m) and recombination rate (genetic length of a chromosome segment/physical length of the same segment in m) was demonstrated. Discrete regions of negative or positive interference (an excess or deficiency of crossovers in adjacent intervals relative to the expected rates on the assumption of no interference) was observed in most of the chromosomes. Surprisingly, pericentromeric regions showed negative interference. Islands with negative, positive and/or no interference were present in interstitial and distal regions. Most of the positive interference was restricted to the long arms. The model of chromosome structure and function in cereals with large genomes that emerges from these studies is discussed.  相似文献   

11.
12.
A bacterial artificial chromosome (BAC) library constructed from the short arm of rye (Secalecereale L.) chromosome 1R has been screened for clones containing copies of the pSc200 tandem repeat family, most abundant in rye subtelomeric heterochromatin. The molecular organization of the monomer array and adjacent sequences has been studied in BAC-126/C20. Digestion of the array with various restriction endonucleases reveals no higher-order organization. The DNA adjacent to the pSc200 array consists of different repeats, including retrotransposon derivatives and another tandemly repeated family, termed XbaI, with a monomer length of 576 bp, 475 of which show 82% similarity to the long terminal repeat of the known Cereba retrotransposon. Sequencing of the 13 kb long genomic region in BAC-126/C20 revealed a direct junction of the pSc200 and XbaI monomers. The arrays of both families terminate at the same AT-rich sequence CAAAAAT. Another recombination signal is the presence of palindromes in the close proximity to the junction site. The presence of microhomologies promotes the action of proteins involved in double-strand DNA break repair. To our knowledge, it is the first discovery of the direct junction of monomers that are longer than 100 bp and belong to different families of plant tandem repeats.  相似文献   

13.
To contribute to the knowledge of fish genomes, we identified and characterized by means of nucleotide sequencing and physical chromosome mapping, three classes of repetitive DNAs in the genome of the South American cichlid fish Astronotus ocellatus. The first class corresponds to a satellite DNA family (AoSat) that shares similarity with a centromeric satellite DNA of the pufferfish Tetraodon nigroviridis. The second repetitive DNA class (AoRex3) is related to the retrotransposon Rex3, which is widely distributed among teleost fishes. The last repetitive element (AoLINE) shows a high similarity to the CR1-like LINE element of other teleosts. The three isolated repetitive elements are clustered in the centromeric heterochromatin of all chromosomes of the complement. The repetitive sequences are not randomly distributed in the genome, suggesting a pattern of compartmentalization on chromosomes.  相似文献   

14.
We studied the genome of an antarctic ice fish, Chionodraco hamatus, in order to detect highly repetitive DNAs that may play a role in heterochromatinization processes and sex chromosome differentiation. We used two different experimental approaches. Hybridization of a Bkm probe to genomic DNA showed slight differences between the two sexes. Using restriction enzymes, a Bgl II satellite (pIF) was isolated. In situ hybridization revealed a preferential localization of pIF on the centromeres and the telomeres of most chromosomes, as well as an interstitial band on the long arms of the neo-Y sex chromosome, where probably the hypothetical fusion took place. Dot-blot experiments showed that pIF is still present in species belonging to different families of the same suborder. Though preliminary, our results suggest a conservative nature of this DNA which might have played a definite functional role in the genome of these polar fishes.  相似文献   

15.
16.
DeBaryshe PG  Pardue ML 《Genetics》2011,187(1):51-60
Repeated DNA in heterochromatin presents enormous difficulties for whole-genome sequencing; hence, sequence organization in a significant portion of the genomes of multicellular organisms is relatively unknown. Two sequenced BACs now allow us to compare telomeric retrotransposon arrays from Drosophila melanogaster telomeres with an array of telomeric retrotransposons that transposed into the centromeric region of the Y chromosome >13 MYA, providing a unique opportunity to compare the structural evolution of this retrotransposon in two contexts. We find that these retrotransposon arrays, both heterochromatic, are maintained quite differently, resulting in sequence organizations that apparently reflect different roles in the two chromosomal environments. The telomere array has grown only by transposition of new elements to the chromosome end; the centromeric array instead has grown by repeated amplifications of segments of the original telomere array. Many elements in the telomere have been variably 5'-truncated apparently by gradual erosion and irregular deletions of the chromosome end; however, a significant fraction (4 and possibly 5 or 6 of 15 elements examined) remain complete and capable of further retrotransposition. In contrast, each element in the centromere region has lost ≥ 40% of its sequence by internal, rather than terminal, deletions, and no element retains a significant part of the original coding region. Thus the centromeric array has been restructured to resemble the highly repetitive satellite sequences typical of centromeres in multicellular organisms, whereas, over a similar or longer time period, the telomere array has maintained its ability to provide retrotransposons competent to extend telomere ends.  相似文献   

17.
18.
Unlike many other organisms, Drosophila maintains its telomeres by the transposition of retrotransposons to chromosome ends. Recent work shows that proteins in the RNA interference pathway specifically regulate the expression of these retrotransposons and frequency of transposition in germline cells, but do not affect retrotransposon expression or telomere function in the soma.  相似文献   

19.
Telomeres, DNA‐protein structures at chromosome ends, shorten with age, and telomere length has been linked to age‐related diseases and survival. In vitro studies revealed that the shortest telomeres trigger cell senescence, but whether the shortest telomeres are also the best biomarker of ageing is not known. We measured telomeres in erythrocytes of wild common terns Sterna hirundo using terminal restriction fragment analysis. This yields a distribution of telomere lengths for each sample, and we investigated how different telomere subpopulations (percentiles) varied in their relation to age and fitness proxies. Longer telomeres within a genome lost more base pairs with age and were better predictors of survival than shorter telomeres. Likewise, fitness proxies such as arrival date at the breeding grounds and reproductive success were best predicted by telomere length at the higher percentiles. Our finding that longer telomeres within a genome predict fitness components better than the shorter telomeres indicates that they are a more informative ageing biomarker. This finding contrasts with the fact that cell senescence is triggered by the shortest telomeres. We suggest that this paradox arises, because longer telomeres lose more base pairs per unit time and thus better reflect the various forms of stress that accelerate telomere shortening, and that telomeres primarily function as biomarker because their shortening reflects cumulative effects of various stressors rather than reflecting telomere‐induced cell senescence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号