首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we present an algorithm developed to handle biomolecular structural recognition problems, as part of an interdisciplinary research endeavor of the Computer Vision and Molecular Biology fields. A key problem in rational drug design and in biomolecular structural recognition is the generation of binding modes between two molecules, also known as molecular docking. Geometrical fitness is a necessary condition for molecular interaction. Hence, docking a ligand (e.g., a drug molecule or a protein molecule), to a protein receptor (e.g., enzyme), involves recognition of molecular surfaces. Conformational transitions by "hinge-bending" involves rotational movements of relatively rigid parts with respect to each other. The generation of docked binding modes between two associating molecules depends on their three dimensional structures (3-D) and their conformational flexibility. In comparison to the particular case of rigid-body docking, the computational difficulty grows considerably when taking into account the additional degrees of freedom intrinsic to the flexible molecular docking problem. Previous docking techniques have enabled hinge movements only within small ligands. Partial flexibility in the receptor molecule is enabled by a few techniques. Hinge-bending motions of protein receptors domains are not addressed by these methods, although these types of transitions are significant, e.g., in enzymes activity. Our approach allows hinge induced motions to exist in either the receptor or the ligand molecules of diverse sizes. We allow domains/subdomains/group of atoms movements in either of the associating molecules. We achieve this by adapting a technique developed in Computer Vision and Robotics for the efficient recognition of partially occluded articulated objects. These types of objects consist of rigid parts which are connected by rotary joints (hinges). Our method is based on an extension and generalization of the Hough transform and the Geometric Hashing paradigms for rigid object recognition. We show experimental results obtained by the successful application of the algorithm to cases of bound and unbound molecular complexes, yielding fast matching times. While the "correct" molecular conformations of the known complexes are obtained with small RMS distances, additional, predictive good-fitting binding modes are generated as well. We conclude by discussing the algorithm's implications and extensions, as well as its application to investigations of protein structures in Molecular Biology and recognition problems in Computer Vision.  相似文献   

2.
Zacharias M 《Proteins》2004,54(4):759-767
Most current docking methods to identify possible ligands and putative binding sites on a receptor molecule assume a rigid receptor structure to allow virtual screening of large ligand databases. However, binding of a ligand can lead to changes in the receptor protein conformation that are sterically necessary to accommodate a bound ligand. An approach is presented that allows relaxation of the protein conformation in precalculated soft flexible degrees of freedom during ligand-receptor docking. For the immunosuppressant FK506-binding protein FKBP, the soft flexible modes are extracted as principal components of motion from a molecular dynamics simulation. A simple penalty function for deformations in the soft flexible mode is used to limit receptor protein deformations during docking that avoids a costly recalculation of the receptor energy by summing over all receptor atom pairs at each step. Rigid docking of the FK506 ligand binding to an unbound FKBP conformation failed to identify a geometry close to experiment as favorable binding site. In contrast, inclusion of the flexible soft modes during systematic docking runs selected a binding geometry close to experiment as lowest energy conformation. This has been achieved at a modest increase of computational cost compared to rigid docking. The approach could provide a computationally efficient way to approximately account for receptor flexibility during docking of large numbers of putative ligands and putative docking geometries.  相似文献   

3.
4.
Computational docking methods are valuable tools aimed to simplify the costly process of drug development and improvement. Most current approaches assume a rigid receptor structure to allow virtual screening of large numbers of possible ligands and putative binding sites on a receptor molecule. However, inclusion of receptor flexibility can be of critical importance since binding of a ligand can lead to changes in the receptor protein conformation that are sterically necessary to accommodate a ligand. Recent approaches to efficiently account for receptor flexibility during docking simulations are reviewed. In particular, accounting efficiently for global conformational changes of the protein backbone during docking is a still challenging unsolved problem. An approximate method has recently been suggested that is based on relaxing the receptor conformation during docking in pre-calculated soft collective degrees of freedom (M. Zacharias, Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP, Proteins: Struct., Funct., Genet. 54 (2004) 759-767). Test applications on protein-protein docking and on docking the inhibitor staurosporine to the apo-form of cAMP-dependent protein kinase A catalytic domain indicate significant improvement of docking results compared to rigid docking at a very modest computational demand. Accounting for receptor conformational changes in pre-calculated global degrees of freedom might offer a promising route to improve systematic docking screening simulations.  相似文献   

5.
Majeux N  Scarsi M  Caflisch A 《Proteins》2001,42(2):256-268
A method is presented for the fast evaluation of the binding energy of a protein-small molecule complex with electrostatic solvation. It makes use of a fast preprocessing step based on the assumption that the main contribution to electrostatic desolvation upon ligand binding originates from the displacement of the first shell of water molecules. For a rigid protein, the precomputation of the energy contributions on a set of grids allows the estimation of the energy in solution of about 300 protein-fragment binding modes per second on a personal computer. The docking procedure is applied to five rigid binding sites whose size ranges from 17 residues to a whole protein of 107 amino acids. Using a library of 70 mainly rigid molecules, known micromolar inhibitors or close analogs are docked and prioritized correctly. The docking based rank-ordering of the library requires about 5 h and is proposed as a complementary approach to structure-activity relationships by nuclear magnetic resonance. Proteins 2001;42:256-268.  相似文献   

6.
Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTA LIGAND , we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density‐95/Dlg/ZO‐1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.  相似文献   

7.
A new computational approach for the efficient docking of flexible ligands in a rigid protein is presented. It exploits the binding modes of functional groups determined by an exhaustive search with solvation. The search in ligand conformational space is performed by a genetic algorithm whose scoring function approximates steric effects and intermolecular hydrogen bonds. Ligand conformations generated by the genetic algorithm are docked in the protein binding site by optimizing the fit of their fragments to optimal positions of chemically related functional groups. We show that the use of optimal binding modes of molecular fragments allows to dock known inhibitors with about ten rotatable bonds in the active site of the uncomplexed and complexed conformations of thrombin and HIV-1 protease.  相似文献   

8.
Proteins often change their conformation upon binding to other molecules. Taking these conformational changes into account in docking is an extremely difficult task: the larger the scale of the motion the harder it is to predict the structure of the association complex. Here, we present a fully automated method for flexible docking with large scale motion in one of the docked molecules. The method automatically identifies hinge regions and rigid parts and then docks the input molecules while explicitly considering the hinges and possible protein motions.  相似文献   

9.
A recent rational approach to anti-malarial drug design is characterized as "covalent biotherapy" involves linking of two molecules with individual intrinsic activity into a single agent, thus packaging dual activity into a single hybrid molecule. In view of this background and reported anti malaria synergism between artemisinin and quinine; we describe the computer-assisted docking to predict molecular interaction and binding affinity of Artemisinin-Quinine hybrid and its derivatives with the intraparasitic haeme group of human haemoglobin. Starting from a crystallographic structure of Fe-protoporphyrin-IX, binding modes, orientation of peroxide bridge (Fe-O distance), docking score and interaction energy are predicted using the docking molecular mechanics based on generalized Born/surface area (MM-GBSA) solvation model. Seven new ligands were identified with a favourable glide score (XP score) and binding free energy (ΔG) with reference to the experimental structure from a data set of thirty four hybrid derivatives. The result shows the conformational property of the drug-receptor interaction and may lead to rational design and synthesis of improved potent artemisinin based hybrid antimalarial that target haemozoin formation.  相似文献   

10.
RAVEN  J. 《Annals of botany》2004,94(1):196-197
The back cover of this book states that ‘contrary to theclaims of the nativists, research shows that man-dispersed speciesincrease biological diversity, benefit ecosystems, and act asan important force for healing the planet’. This is anuncompromising statement, and David Theodoropoulos divides hisdevelopment of the arguments supporting this statement intothree parts. Part I (Chapters 1–6) is ‘Nature, Dispersaland Reaction’. Part II (Chapters 7 and 8) is ‘Why?Psychology, Politics and Pseudoscience’. Part III (Chapters9–11) is ‘Humanity and Diversity’. There isalso an ‘Introduction’ including a summary of findingsand ‘An outline for a new theory of anthropogenic dispersal’,  相似文献   

11.
Zhao Y  Sanner MF 《Proteins》2007,68(3):726-737
Conformational changes of biological macromolecules when binding with ligands have long been observed and remain a challenge for automated docking methods. Here we present a novel protein-ligand docking software called FLIPDock (Flexible LIgand-Protein Docking) allowing the automated docking of flexible ligand molecules into active sites of flexible receptor molecules. In FLIPDock, conformational spaces of molecules are encoded using a data structure that we have developed recently called the Flexibility Tree (FT). While the FT can represent fully flexible ligands, it was initially designed as a hierarchical and multiresolution data structure for the selective encoding of conformational subspaces of large biological macromolecules. These conformational subspaces can be built to span a range of conformations important for the biological activity of a protein. A variety of motions can be combined, ranging from domains moving as rigid bodies or backbone atoms undergoing normal mode-based deformations, to side chains assuming rotameric conformations. In addition, these conformational subspaces are parameterized by a small number of variables which can be searched during the docking process, thus effectively modeling the conformational changes in a flexible receptor. FLIPDock searches the variables using genetic algorithm-based search techniques and evaluates putative docking complexes with a scoring function based on the AutoDock3.05 force-field. In this paper, we describe the concepts behind FLIPDock and the overall architecture of the program. We demonstrate FLIPDock's ability to solve docking problems in which the assumption of a rigid receptor previously prevented the successful docking of known ligands. In particular, we repeat an earlier cross docking experiment and demonstrate an increased success rate of 93.5%, compared to original 72% success rate achieved by AutoDock over the 400 cross-docking calculations. We also demonstrate FLIPDock's ability to handle conformational changes involving backbone motion by docking balanol to an adenosine-binding pocket of protein kinase A.  相似文献   

12.
Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein-protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small-scale movements of the backbone and side-chains are modeled and the binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem.  相似文献   

13.
Protein flexibility in docking and surface mapping   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
16.
Chen YZ  Zhi DG 《Proteins》2001,43(2):217-226
Ligand-protein docking has been developed and used in facilitating new drug discoveries. In this approach, docking single or multiple small molecules to a receptor site is attempted to find putative ligands. A number of studies have shown that docking algorithms are capable of finding ligands and binding conformations at a receptor site close to experimentally determined structures. These algorithms are expected to be equally applicable to the identification of multiple proteins to which a small molecule can bind or weakly bind. We introduce a ligand-protein inverse-docking approach for finding potential protein targets of a small molecule by the computer-automated docking search of a protein cavity database. This database is developed from protein structures in the Protein Data Bank (PDB). Docking is conducted with a procedure involving multiple-conformer shape-matching alignment of a molecule to a cavity followed by molecular-mechanics torsion optimization and energy minimization on both the molecule and the protein residues at the binding region. Scoring is conducted by the evaluation of molecular-mechanics energy and, when applicable, by the further analysis of binding competitiveness against other ligands that bind to the same receptor site in at least one PDB entry. Testing results on two therapeutic agents, 4H-tamoxifen and vitamin E, showed that 50% of the computer-identified potential protein targets were implicated or confirmed by experiments. The application of this approach may facilitate the prediction of unknown and secondary therapeutic target proteins and those related to the side effects and toxicity of a drug or drug candidate. Proteins 2001;43:217-226.  相似文献   

17.
Understanding the principles of protein receptor recognition, interaction, and association with molecular substrates and inhibitors is of principal importance in the drug discovery process. MOLSDOCK is a molecular docking method that we have recently developed. It uses mutually orthogonal Latin square sampling (together with a variant of the mean field technique) to identify the optimal docking conformation and pose of a small molecule ligand in the appropriate receptor site. Here we report the application of this method to simultaneously identify both the low energy conformation and the one with the best pose in the case of 62 protein-bound nucleotide ligands. The experimental structures of all these complexes are known. We have compared our results with those obtained from two other well-known molecular docking software, viz. AutoDock 4.2.3 and GOLD 5.1. The results show that the MOLSDOCK method was able to sample a wide range of binding modes for these ligands and also scores them well.  相似文献   

18.
Docking methodology aims to predict the experimental binding modes and affinities of small molecules within the binding site of particular receptor targets and is currently used as a standard computational tool in drug design for lead compound optimisation and in virtual screening studies to find novel biologically active molecules. The basic tools of a docking methodology include a search algorithm and an energy scoring function for generating and evaluating ligand poses. In this review, we present the search algorithms and scoring functions most commonly used in current molecular docking methods that focus on protein–ligand applications. We summarise the main topics and recent computational and methodological advances in protein–ligand docking. Protein flexibility, multiple ligand binding modes and the free-energy landscape profile for binding affinity prediction are important and interconnected challenges to be overcome by further methodological developments in the docking field.  相似文献   

19.
In the present work, several computational methodologies were combined to develop a model for the prediction of PDE4B inhibitors' activity. The adequacy of applying the ligand docking approach, keeping the enzyme rigid, to the study of a series of PDE4 inhibitors was confirmed by a previous molecular dynamics analysis of the complete enzyme. An exhaustive docking procedure was performed to identify the most probable binding modes of the ligands to the enzyme, including the active site metal ions and the surrounding structural water molecules. The enzyme-inhibitor interaction enthalpies, refined by using the semiempirical molecular orbital approach, were combined with calculated solvation free energies and entropy considerations in an empirical free energy model that enabled the calculation of binding free energies that correlated very well with experimentally derived binding free energies. Our results indicate that both the inclusion of the structural water molecules close to the ions in the binding site and the use of a free energy model with a quadratic dependency on the ligand free energy of solvation are important aspects to be considered for molecular docking investigations involving the PDE4 enzyme family.  相似文献   

20.
With the rapid development of structural determination of target proteins for human diseases, high throughout virtual screening based drug discovery is gaining popularity gradually. In this paper, a fast docking algorithm (H-DOCK) based on hydrogen bond matching and surface shape complementarity was developed. In H-DOCK, firstly a divide-and-conquer strategy based enumeration approach is applied to rank the intermolecular modes between protein and ligand by maximizing their hydrogen bonds matching, then each docked conformation of the ligand is calculated according to the matched hydrogen bonding geometry, finally a simple but effective scoring function reflecting mainly the van der Waals interaction is used to evaluate the docked conformations of the ligand. H-DOCK is tested for rigid ligand docking and flexible one, the latter is implemented by repeating rigid docking for multiple conformations of a small molecule and ranking all together. For rigid ligands, H-DOCK was tested on a set of 271 complexes where there is at least one intermolecular hydrogen bond, and H-DOCK achieved success rate (RMSD<2.0?Å) of 91.1%. For flexible ligands, H-DOCK was tested on another set of 93 complexes, where each case was a conformation ensemble containing native ligand conformation as well as 100 decoy ones generated by AutoDock [1], and the success rate reached 81.7%. The high success rate of H-DOCK indicates that the hydrogen bonding and steric hindrance can grasp the key interaction between protein and ligand. H-DOCK is quite efficient compared with the conventional docking algorithms, and it takes only about 0.14 seconds for a rigid ligand docking and about 8.25 seconds for a flexible one on average. According to the preliminary docking results, it implies that H-DOCK can be potentially used for large scale virtual screening as a pre-filter for a more accurate but less efficient docking algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号