首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine alpha-lactalbumin (alpha-LA) is an alpha/beta protein which adopts partly folded states when dissolved at low pH (A-state), by removal of the protein-bound calcium at neutral pH and low salt concentration (apo-state), as well as in aqueous trifluoroethanol. Previous spectroscopic studies have indicated that the A-state of alpha-LA at pH 2.0, considered a prototype molten globule, has a native-like fold in which the helical core is mostly retained, while the beta subdomain is less structured. Here, we investigate the conformational features of three derivatives of alpha-LA characterized by a single peptide bond fission or a deletion of 12 or 19/22 amino-acid residues of the beta subdomain of the native protein (approximately from residue 34 to 57). These alpha-LA derivatives were obtained by limited proteolysis of the protein in its partly folded state(s). A nicked alpha-LA species consisting of fragments 1-,3-40 and 41-123 (nicked-LA) was prepared by thermolytic digestion of the 123-residue chain of alpha-LA in 50% (v/v) aqueous trifluoroethanol. Two truncated or gapped protein species given by fragments 1-40 and 53-123 (desbeta1-LA) or fragments 1-34 and 54-,57-123 (desbeta2-LA) were obtained by digestion of alpha-LA with pepsin in acid or with proteinase K at neutral pH in its apo-state, respectively. The two protein fragments of nicked or gapped alpha-LA are covalently linked by the four disulfide bridges of the native protein. CD measurements revealed that, in aqueous solution at neutral pH and in the presence of calcium, the three protein species maintain the helical secondary structure of intact alpha-LA, while the tertiary structure is strongly affected by the proteolytic cleavages of the chain. Temperature effects of CD signals in the far- and near-UV region reveal a much more labile tertiary structure in the alpha-LA derivatives, while the secondary structure is mostly retained even upon heating. In acid solution at pH 2.0, the three alpha-LA variants adopt a conformational state essentially identical to the molten globule displayed by intact alpha-LA, as demonstrated by CD measurements. Moreover, they bind strongly the fluorescent dye 8-anilinonaphthalene-1-sulfonate, which is considered a diagnostic feature of the molten globule of proteins. Therefore, the beta subdomain can be removed from the alpha-LA molecule without impairing the capability of the rest of the chain to adopt a molten globule state. The results of this protein dissection study provide direct experimental evidence that in the alpha-LA molten globule only the alpha domain is structured.  相似文献   

2.
The calcium-depleted form of alpha-lactalbumin (alpha-LA) at neutral pH can be induced to adopt a partly folded state or molten globule upon moderate heating, by dissolving the protein in aqueous TFE or by adding oleic acid. This last folding variant of the protein, named HAMLET, can induce apoptosis in tumor cells. The aim of the present work was to unravel from circular dichroism (CD) measurements and proteolysis experiments structural features of the molten globule of apo-alpha-LA at neutral pH. CD spectra revealed that the molten globule of apo-alpha-LA can be obtained upon mild heating at 45 degrees C, as well as at room temperature in the presence of 15% TFE or by adding to the protein solution 7.5 equivalents of oleic acid. Under these various conditions the far- and near-UV CD spectra of apo-alpha-LA are essentially identical to those of the most studied molten globule of alpha-LA at pH 2.0 (A-state). Proteolysis of the 123-residue chain of apo-alpha-LA by proteinase K at 4 degrees C occurs slowly as an all-or-none process leading to small peptides only. At 37 degrees C, proteinase K preferentially cleaves apo-alpha-LA at peptide bonds Ser34-Gly35, Gln39-Ala40, Gln43-Asn44, Phe53-Gln54, and Asn56-Asn57. All these peptide bonds are located at level of the beta-subdomain of the protein (chain region 34-57). Similar sites of preferential cleavage have been observed with the TFE- and oleic acid-induced molten globule of apo-alpha-LA. A protein species given by the N-terminal fragment 1-34 linked via the four disulfide bridges to the C-terminal fragment 54-123 or 57-123 can be isolated from the proteolytic mixture. The results of this study indicate that the same molten globule state of apo-alpha-LA can be obtained at neutral pH under mildly denaturing conditions, as indicated by using a classical spectroscopic technique such as CD and a simple biochemical approach as limited proteolysis. We conclude that the molten globule of alpha-LA maintains a native-like tertiary fold characterized by a rather well-structured alpha-domain and a disordered chain region encompassing the beta-subdomain 34-57 of the protein.  相似文献   

3.
The partly folded states of protein members of the lysozyme (LYS)/alpha-lactalbumin (LA) superfamily have been analyzed by circular dichroism (CD) measurements and limited proteolysis experiments. Hen, horse, dog, and pigeon LYSs and bovine LA were used in the present study. These are related proteins of 123- to 129-amino-acid residues with similar three-dimensional structures but low similarity in amino acid sequences. Moreover, notable differences among them reside in their calcium-binding properties and capability to adopt partly folded states or molten globules in acid solution (A-state) or on depletion of calcium at neutral pH (apo-state). Far- and near-UV CD measurements revealed that although the structures of hen and dog LYS are rather stable in acid at pH 2.0 or at neutral pH in the absence of calcium, conformational transitions to various extents occur with all other LYS/LA proteins herewith investigated. The most significant perturbation of tertiary structure in acid was observed with bovine LA and LYS from horse milk and pigeon egg-white. Pepsin and proteinase K were used as proteolytic probes, because these proteases show broad substrate specificity, and therefore, their sites of proteolysis are dictated not by the specific amino acid sequence of the protein substrate but by its overall structure and dynamics. Although hen LYS at pH 2.0 was fully resistant to proteolysis by pepsin, the other members of the LYS/LA superfamily were cleaved at different rates at few sites of the polypeptide chain and thus producing rather large protein fragments. The apo-form of bovine LA, horse LYS, and pigeon LYS were attacked by proteinase K at pH 8.3, whereas dog and hen LYSs were resistant to proteolysis when reacted under identical experimental conditions. Briefly, it has been found that the proteolysis data correlate well with the extent of conformational transitions inferred from CD spectra and with existing structural informations regarding the proteins herewith investigated, mainly derived from NMR and hydrogen exchange measurements. The sites of initial proteolytic cleavages in the LYS variants occur at the level of the beta-subdomain (approximately chain region 34-57), in analogy to those observed with bovine LA. Proteolysis data are in agreement with the current view that the molten globule of the LYS/LA proteins is characterized by a structured alpha-domain and a largely disrupted beta-subdomain. Our results underscore the utility of the limited proteolysis approach for analyzing structure and dynamics of proteins, even if adopting an ensemble of dynamic states as in the molten globule.  相似文献   

4.
Singh SK  Kishore N 《Biopolymers》2006,83(3):205-212
Isothermal titration calorimetry has been used to demonstrate that the heat profile associated with the binding of 8-anilino-1-naphthalene sulfonic acid (ANS) with the acid induced molten globule state (A-state) of alpha-lactalbumin (alpha-LA) is different from that with the native and denatured states of the protein. The results corroborate the spectroscopic observations that ANS binds more strongly to the partially folded states of the protein compared to that with the native and denatured states. ANS binds to the A-state of alpha-LA at two independent binding sites that remain nearly the same in the temperature range of 10-35 degrees C. The number of moles of ANS binding at site 1 at 10 degrees C is 14.0+/-0.2 and remains nearly the same with rise in temperature. However, the number of moles of ANS molecules binding at site 2 show an increase from 1.6+/-0.2 at 10 degrees C to 4.1+/-0.1 at 35 degrees C. The deviation of the slope of enthalpy-entropy compensation plot from unity and nonadherence to van't Hoff dictates implies that the binding sites on the A-state of alpha-LA for ANS are not well defined and specific; rather, these binding sites are formed due to greater exposure of hydrophobic clusters in the A-state of the protein. The results for the first time demonstrate the use of isothermal titration calorimetry in characterizing the A-state of alpha-LA both qualitatively and quantitatively.  相似文献   

5.
Horng JC  Demarest SJ  Raleigh DP 《Proteins》2003,52(2):193-202
Many proteins are capable of populating partially folded states known as molten globule states. Alpha-lactalbumin forms a molten globule under a range of conditions including low pH (the A-state) and at neutral pH in the absence of Ca(2+) with modest amounts of denaturant. The A-state is the most thoroughly characterized and thought to mimic a kinetic intermediate populated during refolding at neutral pH. We demonstrate that the properties and interactions that stabilize the A-state and the pH 7 molten globule of human alpha-lactalbumin differ. The unfolding of the wild-type protein is compared to the unfolding of a variant that lacks the 6 - 120 disulfide bond and to an autonomously folded peptide construct that we have previously shown represents the minimum core structure of the A-state of human alpha-lactalbumin. Studies conducted at pH 2 and 7 show that the disulfide makes little contribution to the stability of the molten globule at pH 7 but is important at pH 2. In contrast, the beta-subdomain of the protein is less important at pH 2 than at pH 7. The role of helix propensity in stabilizing the different forms of the molten globule state is examined and it is shown that it cannot account for the differences. The strikingly different behavior observed at pH 2 and 7 indicates that the A-state may not be a rigorous mimic of the folding intermediate populated at pH 7.  相似文献   

6.
7.
The limited proteolysis approach was used to analyze the conformational features of human growth hormone (hGH) under acidic solvent conditions (A-state). Pepsin was used as the proteolytic probe because of its poor substrate specificity and its activity at low pH. Limited proteolysis of hGH in its A-state results in a selective cleavage of the Phe44-Leu45 peptide bond, leading to the production of fragments 1-44 and 45-191. The two fragments were isolated in homogeneous form for studying their conformational properties by means of spectroscopic methods. Fragment 1-44 was shown to retain little secondary and tertiary structure at neutral pH, while fragment 45-191 independently folds into a highly helical secondary structure. In particular, we have shown that the two peptic fragments are able to associate into a stable and native-like hGH complex 1-44/45-191. Our proteolysis data indicate that in acid solution hGH adopts a partly folded state characterized by a local unfolding of the first minihelix (residues 38-47) encompassing the Phe44-Leu45 peptide bond. Of interest, hGH has both insulin-like and diabetogenic effects. Two fragments of hGH occur in vivo and exert these two opposite activities, namely, fragment 1-43 showing an insulin-potentiating effect and fragment 44-191 showing a diabetogenic activity. The results of this study suggest that the conformational changes of hGH induced by an acidic pH promote the generation of the two physiologically relevant fragments by proteolytic processing of the hormone. Although pepsin cannot be the enzyme responsible for the in vivo processing of the hormone, we propose that limited proteolysis of hGH at low pH is physiologically relevant, since the hormone is exposed to an acidic environment in the cell. This study reports for the first time the analysis of the conformational features of the two individual functional domains of hGH and of their complex.  相似文献   

8.
Staphylococcal nuclease, at low pH and in the presence of high salt concentrations, has previously been proposed to exist in a partially folded or molten globule form called the "A-state" (Fink et al., 1993, Protein Sci 2:1155-1160). We have found that the A-state of nuclease at pH 2.1 in the presence of moderate to high salt concentrations and at low temperature exists in a substantially folded form structurally more similar to a native state. The A-state has the far-UV circular dichroism spectra characteristic of the native protein, which indicates that it has a large degree of secondary structure. Upon heating, the A-state denatures with a sigmoidal change in far-UV ellipticity and an observable peak in a differential scanning calorimeter trace, indicating that it is thermodynamically distinct from the denatured state. Three different mutations in a residue normally buried in the protein's core stabilize or destabilize the A-state in the same way as they affect the denaturation of the native state. The A-state must, therefore, contain at least some tertiary packing of side chains. Unlike the native state, which shows cold denaturation at low temperatures, the A-state is most stable at temperatures below 0 degrees C.  相似文献   

9.
Proteolysis experiments have been used to monitor the conformational transitions from an unfolded to a folded state occurring when the apo form of horse cytochrome c (cyt c) binds the heme moiety or when two fragments of cyt c form a native-like 1:1 complex. Proteinase K was used as a proteolytic probe, in view of the fact that the broad substrate specificity of this protease allows digestion at many sites along a polypeptide chain. The rather unfolded apo form of cyt c binds heme with a concomitant conformational transition to a folded species characterized by an enhanced content of helical secondary structure. While the holoprotein is fully resistant to proteolytic digestion and the apoprotein is digested to small peptides, the noncovalent complex of the apoprotein and heme exhibits an intermediate resistance to proteolysis, in agreement with the fact that the more folded structure of the complex makes the protein substrate more resistant to proteolysis. The noncovalent native-like complex of the two fragments 1-56 and 57-104 of cyt c, covering the entire polypeptide chain of 104 residues of the protein, is rather resistant to proteolysis, while the individual fragments are easily digested. Fragment 57-104 is fast degraded to several peptides, while fragment 1-56 is slowly degraded stepwise from its C-terminal end, leading initially mostly to fragments 1-48 and 1-40 and, at later stages of proteolysis, fragments 1-38, 1-35, 1-33, and 1-31. Thus, proteolysis data indicate that the heme containing fragment 1-56 has a rather compact core and a C-terminal flexible tail. Upon prolonged incubation of the complex of fragments 1-56 and 57-104 (nicked cyt c) with proteinase K, a chain segment is removed from the nicked protein, leading to a gapped protein complex of fragments of 1-48 and 57-104 and, on further digestion, fragments 1-40 and 57-104. Of interest, the chain segment being removed by proteolysis of the complex matches the omega-loop which is evolutionarily removed in cyt c of microbial origin. Overall, rates and/or resistance to proteolysis correlates well with the extent of folding of the protein substrates, as deduced from circular dichroism measurements. Thus, our results underscore the utility of proteolytic probes for analyzing conformational and dynamic features of proteins. Finally, a specific interest of the cyt c fragment system herewith investigated resides in the fact that the fragments are exactly the exon products of the cyt c gene.  相似文献   

10.
Effects of calcium removal on the cell-clearing activity of alpha-lactalbumin (alpha-LA) and concomitant changes in conformational structure have been investigated as part of a continuing study of the activity found earlier [McKenzie, H.A. & White, F.H., Jr. (1987) Biochem. Int. 14, 347]. This activity is similar to that of lysozyme, whereby lysis of the bacterial cell wall is catalyzed. However, the specific activity of alpha-LA is on the order of 10(-6) that of lysozyme. Under conditions where activities of apo and native alpha-LA were approximately linear functions of the protein concentration, the maximal ratio of apo to native activity was 5.7:1, determined by comparison of second order velocity constants. The CD spectrum of apo alpha-LA is intermediate between that of the A state and the native protein. By NMR, the conformation of apo alpha-LA is similar to, but distinctly different from, that of the native protein. The apo form did not revert completely to the native state when Ca(II) was resupplied, consistent with a role for this cation in folding. It is suggested that the activity increase may result from a diminished constriction of the "cleft" region in alpha-LA.  相似文献   

11.
Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.  相似文献   

12.
Nonnative protein structures having a compact secondary, but not rigid tertiary structure, have been increasingly observed as intermediate states in protein folding. We have shown for the first time during acid-induced unfolding of xylanase (Xyl II) the presence of a partially structured intermediate form resembling a molten globule state. The conformation and stability of Xyl II at acidic pH was investigated by equilibrium unfolding methods. Using intrinsic fluorescence and CD spectroscopic studies, we have established that Xyl II at pH 1.8 (A-state) retains the helical secondary structure of the native protein at pH 7.0, while the tertiary interactions are much weaker. At variance, from the native species (N-state), Xyl II in the A-state binds 1-anilino-8-sulfonic acid (ANS) indicating a considerable exposure of aromatic side chains. Lower concentration of Gdn HCl are required to unfold the A-state. For denaturation by Gdn HCl, the midpoint of the cooperative unfolding transition measured by fluorescence for the N-state is 3.5 +/- 0.1 M, which is higher than the value (2.2 +/- 0.1 M) observed for the A-state at pH 1.8. This alternatively folded state exhibits certain characteristics of the molten globule but differs distinctly from it by its structural stability that is characteristic for native proteins.  相似文献   

13.
Sac7d unfolds at low pH in the absence of salt, with the greatest extent of unfolding obtained at pH 2. We have previously shown that the acid unfolded protein is induced to refold by decreasing the pH to 0 or by addition of salt (McCrary BS, Bedell J. Edmondson SP, Shriver JW, 1998, J Mol Biol 276:203-224). Both near-ultraviolet circular dichroism spectra and ANS fluorescence enhancements indicate that the acid- and salt-induced folded states have a native fold and are not molten globular. 1H,15N heteronuclear single quantum coherence NMR spectra confirm that the native, acid-, and salt-induced folded states are essentially identical. The most significant differences in amide 1H and 15N chemical shifts are attributed to hydrogen bonding to titrating carboxyl side chains and through-bond inductive effects. The 1H NMR chemical shifts of protons affected by ring currents in the hydrophobic core of the acid- and salt-induced folded states are identical to those observed in the native. The radius of gyration of the acid-induced folded state at pH 0 is shown to be identical to that of the native state at pH 7 by small angle X-ray scattering. We conclude that acid-induced collapse of Sac7d does not lead to a molten globule but proceeds directly to the native state. The folding of Sac7d as a function of pH and anion concentration is summarized with a phase diagram that is similar to those observed for other proteins that undergo acid-induced folding except that the A-state is encompassed by the native state. These results demonstrate that formation of a molten globule is not a general property of proteins that are refolded by acid.  相似文献   

14.
The dominant dynamics of a partially folded A-state analogue of ubiquitin that give rise to NMR 15N spin relaxation have been investigated using molecular dynamics (MD) computer simulations and reorientational quasiharmonic analysis. Starting from the X-ray structure of native ubiquitin with a protonation state corresponding to a low pH, the A-state analogue was generated by a MD simulation of a total length of 33 ns in a 60%/40% methanol/water mixture using a variable temperature scheme to control and speed up the structural transformation. The N-terminal half of the A-state analogue consists of loosely coupled native-like secondary structural elements, while the C-terminal half is mostly irregular in structure. Analysis of dipolar N-H backbone correlation functions reveals reorientational amplitudes and time-scale distributions that are comparable to those observed experimentally. Thus, the trajectory provides a realistic picture of a partially folded protein that can be used for gaining a better understanding of the various types of reorientational motions that are manifested in spin-relaxation parameters of partially folded systems. For this purpose, a reorientational quasiharmonic reorientational analysis was performed on the final 5 ns of the trajectory of the A-state analogue, and for comparison on a 5 ns trajectory of native ubiquitin. The largest amplitude reorientational modes show a markedly distinct behavior for the two states. While for native ubiquitin, such motions have a more local character involving loops and the C-terminal end of the polypeptide chain, the A-state analogue shows highly collective motions in the nanosecond time-scale range corresponding to larger-scale movements between different segments. Changes in reorientational backbone entropy between the A-state analogue and the native state of ubiquitin, which were computed from the reorientational quasiharmonic analyses, are found to depend significantly on motional correlation effects.  相似文献   

15.
Alternatively folded states of an immunoglobulin   总被引:1,自引:0,他引:1  
Well-defined, non-native protein structures of low stability have been increasingly observed as intermediates in protein folding or as equilibrium structures populated under specific solvent conditions. These intermediate structures, frequently referred to as molten globule states, are characterized by the presence of secondary structure, a lack of significant tertiary contacts, increased hydrophobicity and partial specific volume as compared to native structures, and low cooperativity in thermal unfolding. The present study demonstrates that under acidic conditions (pH less than 3) the antibody MAK33 can assume a folded stable conformation. This A-state is characterized by a high degree of secondary structure, increased hydrophobicity, a native-like maximum wavelength of fluorescence emission, and a tendency toward slow aggregation. A prominent feature of this low-pH conformation is the stability against denaturant and thermal unfolding that is manifested in highly cooperative reversible phase transitions indicative of the existence of well-defined tertiary contacts. These thermodynamic results are corroborated by the kinetics of folding from the completely unfolded chain to the alternatively folded state at pH 2. The given data suggest that MAK33 at pH 2 adopts a cooperative structure that differs from the native immunoglobulin fold at pH 7. This alternatively folded state exhibits certain characteristics of the molten globule but differs distinctly from it by its extraordinary structural stability that is characteristic for native protein structures.  相似文献   

16.
A few studies indirectly support the existence of an intermediate in the transition of Ca(2+)-saturated bovine alpha-lactalbumin (alpha-LA) from the native (N) to the acidic (A) state, known as the molten globule state. However, direct experimental evidence for the appearance of this intermediate has not been obtained. The signal of circular polarization of luminescence (CPL) is sensitive to fine conformational transitions because of its susceptibility to changes in the environmental asymmetry of fluorescent chromophores in their excited electronic states. In the present study, CPL measurements were applied using the intrinsic tryptophan fluorescence of alpha-LA as well as the fluorescence of 8-anilino-1-naphthalenesulfonic acid (ANS) bound to alpha-LA. CPL of tryptophan and ANS was measured in the pH range of 2.5-6 in order to find direct experimental evidence for the proposed intermediate. CPL (characterized by the emission anisotropy factor, g(em)) depends on the asymmetry of the protein molecular structure in the environment of the tryptophan and the ANS chromophores in the excited electronic state. The pH dependence of both the gab, absorption anisotropy factor determined by CD, and the ANS steady state fluorescence, showed a single transition at pH 3-3.7 as already reported elsewhere. This transition was interpreted as being a result of a change of the alpha-LA tertiary structure, which resulted in a loss of asymmetry of the environment of both the tryptophan residues and the ANS hydrophobic binding sites. The pH dependence of the tryptophan and ANS g(em) showed an additional conformational transition at pH 4-5, which coincided with the pKa of Ca2+ dissociation (pKa 5), as predicted by Permyakov et al. (1981, Biochem Biophys Res Commun 100:191-197). The titration curve showed that there is a pH range between 3.7 and 4.1 in which alpha-LA exists in an intermediate state between the N- and A-state. We suggest that the intermediate is the premolten globule state characterized by a reduced Ca2+ binding to the alpha-LA, native-like tertiary structure, and reduced asymmetric fluctuation of the tertiary structure on the nanosecond time scale. This intermediate resembles the "critical activated state" theoretically deduced by Kuwajima et al. (1989, J Mol Biol 206:547-561). The present study demonstrates the power of CPL measurements for the investigation of folding/unfolding transitions in proteins.  相似文献   

17.
Chakraborty S  Ittah V  Bai P  Luo L  Haas E  Peng Z 《Biochemistry》2001,40(24):7228-7238
The fluorescence properties of three variants of alpha-lactalbumin (alpha-LA) containing a single tryptophan residue were investigated under native, molten globule, and unfolded conditions. These proteins have levels of secondary structure and stability similar to those of the wild type. The fluorescence signal in the native state is dominated by that of W104, with the signal of W60 and W118 significantly quenched by the disulfide bonds in their vicinity. In the molten globule state, the magnitude of the fluorescence signal of W60 and W118 increases, due to the loss of rigid, specific side chain packing. In contrast, the magnitude of the signal of W104 decreases in the molten globule state, perhaps due to the protonation of H107 or quenching by D102 or K108. The solvent accessibilities of individual tryptophan residues were investigated by their fluorescence emission maximum and by acrylamide quenching studies. In the native state, the order of solvent accessibility is as follows: W118 > W60 > W104. This order changes to W60 > W104 > W118 in the molten globule state. Remarkably, the solvent accessibility of W118 in the alpha-LA molten globule is lower than that in the native state. The dynamic properties of the three tryptophan residues were examined by time-resolved fluorescence anisotropy decay studies. The overall rotation of the molecule can be observed in both the native and molten globule states. In the molten globule state, there is an increase in the extent of local backbone fluctuations with respect to the native state. However, the fluctuation is not sufficient to result in complete motional averaging. The three tryptophan residues in the native and molten globule states have different degrees of motional freedom, reflecting the folding pattern and dynamic heterogeneity of these states. Taken together, these studies provide new insight into the structure and dynamics of the alpha-LA molten globule, which serves as a prototype for partially folded proteins.  相似文献   

18.
Incubation of the neutral metalloendopeptidase thermolysin at pH 7.2 in the presence of EDTA and/or low concentrations of calcium ions produces fast enzyme inactivation as a result of autolysis. The 'nicked' protein is a folded species composed of three tightly associated protein fragments. Dissociation of this complex can be achieved under denaturing conditions, such as gel filtration on a column equilibrated with 5 M guanidine hydrochloride or reverse-phase high-performance liquid chromatography (HPLC) at acidic pH. The positions of the peptide bond cleavages were defined by isolation of the individual fragments by HPLC and their characterization by amino acid analysis after acid hydrolysis, end-group determination and partial amino acid sequencing. The results of these analyses indicated that the nicked protein is composed of fragments 1-196, 197-204 and 205-316 and thus that the corresponding sites of limited proteolysis occur at the polypeptide chain loop involved in the binding of Ca(4) in native thermolysin [Matthews, B. W., Weaver, L. H. and Kester, W. R. (1974) J. Biol. Chem. 249, 8030-8044]. The overall conformational properties of nicked thermolysin are quite similar to those of the intact protein, as judged by spectroscopic measurements and by the fact that rabbit antibodies against native thermolysin recognize and precipitate the nicked protein in immunodiffusion assays. The nicked protein was much less stable to heat and unfolding agents than intact thermolysin. These results contribute to a better knowledge of the molecular mechanism of stabilization of native thermolysin by the four bound calcium ions and demonstrate that the function of Ca(4) is to stabilize the loop 190-205 on the surface of the molecule against autolysis.  相似文献   

19.
A series of explicit-solvent molecular dynamics simulations of the protein ubiquitin are reported, which investigate the effect of environmental factors (presence of methanol cosolvent in the aqueous solution, neutral or low pH value, room or elevated temperature) on the structure, stability, and dynamics of the protein. The simulations are initiated either from the native structure of the protein or from a model of a partially folded state (A-state) that is known to exist at low pH in methanol-water mixtures. The main results of the simulations are: (1) The ubiquitin native structure is remarkably stable at neutral pH in water; (2) the addition of the methanol cosolvent enhances the stability of the secondary structure but weakens tertiary interactions within the protein; (3) this influence of methanol on the protein structure is enhanced at low pH, while the effect of lowering the pH in pure water is limited; and (4) the A-state of ubiquitin can be described as a set of relatively rigid secondary structure elements (a native-like beta-sheet and native-like alpha-helix plus two nonnative alpha-helices) connected by flexible linkers.  相似文献   

20.
Fusion of phospholipid vesicles induced by alpha-lactalbumin at acidic pH   总被引:4,自引:0,他引:4  
J Kim  H Kim 《Biochemistry》1986,25(24):7867-7874
Alpha-Lactalbumin (alpha-LA), lysozyme, and ribonuclease are found to induce fusion of phosphatidylserine/phosphatidylethanolamine vesicles at low pH. The fusogenic behavior and the binding to phospholipid vesicles of one of these proteins, alpha-LA, are studied at a wide range of conditions. The initial rate of fusion in the presence of alpha-LA increases with increasing acidity below pH 6, and the extent of alpha-LA binding to the vesicles is also found to increase with decreasing pH. Once bound to the vesicles in acidic media, the neutralization to pH 7 fails to dislodge the alpha-LA from the vesicles, and this irreversible binding also increases with decreasing pH. A segment of alpha-LA is found to be resistant to the proteolytic digestion when initially incubated with the vesicles at low pH. The amino acid composition of this fragment was determined, and from this the sequence of alpha-LA fragment, which appears to be inserted into the bilayer, is deduced. Hydrophobic labeling with dansyl chloride renders support that this segment indeed penetrates into the hydrophobic interior of bilayer. Since both the N-terminal and the C-terminal of this vesicle-bound protein are accessible to the externally added proteolytic enzymes, it is concluded that a loop of the polypeptide segment goes into the bilayer. These observations, taken together, suggest a possibility that the penetration by a loop of alpha-LA segment into the phospholipid bilayer is responsible for the fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号