首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chlorination activity of free myeloperoxidase and myeloperoxidase bound with ceruloplasmin or with both ceruloplasmin and lactoferrin has been studied by luminal-dependent chemiluminescence. It was shown that the addition of hydrogen peroxide to the "myeloperoxidase + Cl- + luminal" system is accompanied by a fast flash of light emission. In the absence of myeloperoxidase or Cl-, the flash intensity was considerably reduced. The inhibitor of myeloperoxidase NaN3, the HOCl scavengers taurine and methionine, and guaiacol, a substrate for peroxidation cycle of myeloperoxidase, prevented luminescence. These results suggest that the generation of luminescence was due to the halogenating activity of myeloperoxidase, and hence, the flash light sum may serve as a measure of chlorination activity of myeloperoxidase. The activity of myeloperoxidase was suppressed by ceruloplasmin. Lactoferrin exhibited no significant influence on the myeloperoxidase activity, nor did it prevent the inhibitory effect of ceruloplasmin when they both were combined with myeloperoxidase. These data were confirmed using alternative approaches for evaluating the myeloperoxidase activity, namely, the assessment of peroxidation activity and the taurine chlorination assay. It is noteworthy that the inhibitory effect of ceruloplasmin on chlorination and peroxidation activities of myeloperoxidase is seen with the latter, traditional approaches only if ceruloplasmin is present in a large excess relative to myeloperoxidase, whereas the chemiluminescence method allows the detection of the inhibitory effect of ceruloplasmin using lower proportions of the protein with respect to myeloperoxidase, which are close to the stoichiometry of the myeloperoxidase/ceruloplasmin and the myeloperoxidase'ceruloplasmin'lactoferrin complexes.  相似文献   

2.
The absorption spectra of alkaline pyridine hemochrome of myeloperoxidase in its native, acid, and modified forms were similar to those of heme a, and the molar extinction coefficient of myeloperoxidase heme was very similar to that of heme a, assuming that myeloperoxidase contains only one heme. The anaerobic titration of myeloperoxidase with dithionite showed that one electron was consumed per molecule of the enzyme for its conversion to its reduced form. The EPR spectrum of myeloperoxidase indicated that the enzyme contains both high-spin heme and non-heme iron. Carbonyl reagents, such as borohydride, hydrazine, and benzhydrazide, reacted with myeloperoxidase, causing blue shifts in its absorption spectrum. The heme was labeled with a tritium of boro[3H]hydride, suggesting that the reagents reacted with a formyl group on the porphyrin ring of the myeloperoxidase heme. When hydrazine was added to cyanide complex I of myeloperoxidase the complex was converted to the hydrazine-enzyme compound. Myeloperoxidase reacted with bisulfite to form a compound with an absorption spectrum similar to that of cyanide complex I. Borohydride-treated myeloperoxidase formed only one cyanide complex, while the native enzyme formed two different cyanide complexes, I (Kd = 0.3 muM) and II (approximate Kd = 0.1 mM). The EPR spectrum indicated that cyanide complex I of myeloperoxidase still contained high-spin heme. The results suggested that cyanide complex I and the bisulfite compound of myeloperoxidase were adducts between the nucleophilic reagents and the formyl group of myeloperoxidase heme. Based on these results, we concluded that one of the two iron atoms in a myeloperoxidase molecule exists in a formyl-heme moiety similar to heme a and the other exists as a non-heme iron.  相似文献   

3.
A large-scale purification procedure was developed for the isolation of myeloperoxidase from HL60 promyelocytic cells in culture. Initial studies showed the bulk of peroxidase-positive myeloperoxidase activity to be located in the cetyltrimethylammonium bromide solubilized particulate fraction of cell homogenates. The myeloperoxidase was then chromatographically purified using concanavalin A followed by gel filtration. SDS-PAGE analysis of the final preparation showed the presence of only two proteins with molecular masses of approximately 55 and 15 kDa, corresponding to the large and small subunits of myeloperoxidase. These data, along with Reinheit Zahl (RZ) values (A(430)/A(280)) of greater than or equal to 0.72, indicate that the myeloperoxidase prepared by this method is apparently homogeneous. Preparations routinely yielded 12-20 mg of pure myeloperoxidase per 10 ml of cell pellet. The HL60 myeloperoxidase was shown to be indistinguishable from purified human neutrophil myeloperoxidase by size exclusion chromatography, analytical ultracentrifugation, SDS-PAGE, Western blot, and NH(2)-terminal sequence analysis. The activities of the two myeloperoxidase samples, as measured using either the tetramethylbenzidine or the taurine chloramine assay, were indistinguishable. Finally, both enzymes responded identically to dapsone and aminobenzoic acid hydrazide, known inhibitors of myeloperoxidase. A protocol is presented here for the rapid, large-scale purification of myeloperoxidase from cultured HL60 cells, as well as evidence for the interchangeability of this myeloperoxidase and that purified from human neutrophils.  相似文献   

4.
5.
Myeloperoxidase synthesis during induction of differentiation of human promyelocytic leukemia HL-60 cells by 12-O-tetradecanoylphorbol-13-acetate (TPA) was studied. Differentiation was characterized by morphological changes, arrest of cell proliferation, development of cell adherence, and increased secretion of lysozyme. The cellular myeloperoxidase activity decreased early during induction of differentiation by TPA. Pulse-labeling experiments indicated that the rate of myeloperoxidase synthesis decreased to an undetectable level in cells exposed to TPA for 22 h. The relative amounts of myeloperoxidase mRNA in TPA-treated and untreated cells were determined by measuring translatable mRNA activity in a reticulocyte lysate system. Reduction in the myeloperoxidase mRNA level was observed as early as after 3 h treatment with TPA, and no myeloperoxidase mRNA was detected after 24 h. Time course experiments indicated that the time required for 50% reduction of myeloperoxidase mRNA in TPA-treated cells was approximately 5 h. These results suggest that TPA induces decrease of myeloperoxidase activity in HL-60 cells at a pretranslational level.  相似文献   

6.
The properties of a peroxidase in human colostrum were studied using antiserum against human myeloperoxidase. The peroxidase in human colostrum gave a single precipitin line against the antiserum on double immunodiffusion, and this precipitin line fused completely with the precipitin line formed between myeloperoxidase and the antiserum. The peroxidase activity in human colostrum was precipitated completely with anti-myeloperoxidase IgG, like myeloperoxidase activity. The peroxidase of colostral whey was purified to homogeneity. The purified enzyme consisted of two subunits of Mr 59,000 and 15,000, corresponding in size to the two subunits of myeloperoxidase. Immunostaining of a protein blot from a sodium dodecyl sulfate-polyacrylamide electrophoresis gel also showed that the peroxidase in the whey extract consisted of the same two subunits as myeloperoxidase. These results indicate that the peroxidase of human colostrum is identical with myeloperoxidase.  相似文献   

7.
Molecular cloning and characterization of cDNA for human myeloperoxidase   总被引:8,自引:0,他引:8  
Partial amino acid sequence of human myeloperoxidase was determined, and a 41-base oligonucleotide containing deoxyinosines at four positions was chemically synthesized. By using the oligonucleotide as a probe, cDNA clones for human myeloperoxidase were isolated from a cDNA library constructed with mRNA from human promyelocytic leukemia HL-60 cells. One of the clones containing a 2.6-kilobase insert was subjected to nucleotide sequence analysis. The sequence was found to contain an open reading frame, 2,235 nucleotides coding for a protein of 745 amino acids with a calculated Mr of 83,868. The heavy chain of myeloperoxidase, consisting of 467 amino acids, was located on the COOH terminus half of the protein. The RNA specified by the cDNA was prepared using SP6 RNA polymerase and translated in rabbit reticulocyte lysates, and the product was identified as human myeloperoxidase by immunoprecipitation with rabbit anti-human myeloperoxidase antibody. By Northern hybridization analysis of RNA from leukemic cells, it was shown that myeloperoxidase mRNA is abundantly expressed in human promyelocytic HL-60 and mouse myeloid leukemia NFS-60 cells. Furthermore, the results of Southern hybridization analysis of human genomic DNA suggest that there are one or two genes for myeloperoxidase in the human haploid genome.  相似文献   

8.
Human myeloid leukemia HL-60 cells were grown either in suspension culture or in nude mice. The two types of myeloperoxidase, the small and the large type, in crude extracts of these cells were analyzed by sucrose density gradient centrifugation. The proportions of the small and the large myeloperoxidase varied markedly depending on the growth conditions of cells. In cells in culture, the small myeloperoxidase amounted to 80% of the total myeloperoxidase, whereas in the solid tumors it amounted to only about 30% of the total. Both in cultured cells and solid tumors, 40% of the total myeloperoxidase was found in the soluble fraction and the rest in the granule fraction. However, adult and fetal blood granulocytes contained only the large myeloperoxidase, which was mainly recovered in the granule fraction. Antiserum prepared against purified large myeloperoxidase of HL-60 solid tumors reacted with the small myeloperoxidase as well as the large enzyme of HL-60 cells in culture. The antiserum also precipitated myeloperoxidase of adult and fetal blood granulocytes. An Ouchterlony double immunodiffusion test also revealed their immunological identity.  相似文献   

9.
Myeloperoxidase is synthesized as larger phosphorylated precursor.   总被引:1,自引:0,他引:1       下载免费PDF全文
Synthesis and processing of myeloperoxidase were examined in metabolically labeled cells of the human promyelocyte line HL-60 and in an in vitro rabbit reticulocyte lysate system directed with HL-60 mRNA. Radioactivity labeled products were isolated by immunoprecipitation and analyzed by gel electrophoresis and fluorography. In vivo, myeloperoxidase was labeled initially as a 85-K glycosylated polypeptide (75 K after treatment with endo-beta-N-acetylglucosaminidase H). This polypeptide was soon processed to an 81-K intermediate and to smaller mature fragments of 60 K and 13 K within approximately 1 day. A minor portion of the precursor was converted to fragments of 40 K and 43 K. The pattern of labeled polypeptides of mature myeloperoxidase was similar to that of the enzyme purified from human leucocytes. The modifications of the polypeptide and of the oligosaccharide side chains in myeloperoxidase resembled those known to occur during the processing of lysosomal enzymes. In the absence or presence of dog pancreas membranes, myeloperoxidase was synthesized in vitro as a 76-K polypeptide or a 87-K glycosylated polypeptide, respectively. In HL-60 cells [32P]phosphate was incorporated into endo-beta-N-acetylglucosaminidase H-sensitive oligosaccharides. The presence of phosphorylated oligosaccharides was inferred from the fact that endocytosis of leucocyte myeloperoxidase in fibroblasts was sensitive to mannose 6-phosphate. It is suggested that myeloperoxidase is synthesized in the rough endoplasmic reticulum as a precursor of larger molecular mass and that the oligosaccharide side chains in the precursor are modified to contain mannose 6-phosphate residues which may be involved in the segregation and transport of the precursor.  相似文献   

10.
Myeloperoxidase, a heme protein expressed by professional phagocytic cells, generates an array of oxidants which are proposed to contribute to tissue damage during inflammation. We now report that enzymatically active myeloperoxidase and its characteristic amino acid oxidation products are present in human brain. Further, expression of myeloperoxidase is increased in brain tissue showing Alzheimer's neuropathology. Consistent with expression in phagocytic cells, myeloperoxidase immunoreactivity was present in some activated microglia in Alzheimer brains. However, the majority of immunoreactive material in brain localized with amyloid plaques and, surprisingly, neurons including granule and pyramidal neurons of the hippocampus. Confirming neuronal localization of the enzyme, several neuronal cell lines as well as primary neuronal cultures expressed myeloperoxidase protein. Myeloperoxidase mRNA was also detected in neuronal cell lines. These results reveal the unexpected presence of myeloperoxidase in neurons. The increase in neuronal myeloperoxidase expression we observed in Alzheimer disease brains raises the possibility that the enzyme contributes to the oxidative stress implicated in the pathogenesis of the neurodegenerative disorder.  相似文献   

11.
The processing and intracellular transport of myeloperoxidase were studied in the human promyelocytic leukaemia cell line HL-60 and in normal marrow cells labelled with [35S]methionine or [14C]leucine. Myeloperoxidase was precipitated with antimyeloperoxidase serum; the immunoprecipitates were subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and radiolabelled myeloperoxidase visualized by fluorography. During a 1 h pulse, myeloperoxidase was labelled in a chain of apparent Mr 90 000. With a subsequent chase, the Mr 90 000 polypeptide disappeared and was replaced by chains of Mr 62 000 and 12 400 corresponding roughly to the size of neutrophil myeloperoxidase subunits. The identification of the radioactive polypeptides as different forms of myeloperoxidase was established also by the similarity in patterns generated by partial proteolysis with V8 proteinase from Staphylococcus aureus. Processing of myeloperoxidase in HL-60 was slow; mature polypeptides were significantly increased only after 6 h. Another myeloperoxidase chain of apparent Mr 82 000 was an intermediate precursor or degradation form. Pulse-chase experiments in combination with sucrose-density-gradient separations of homogenates showed that the Mr 90 000 precursor was located in light density organelles only and not in granule fractions, whereas the Mr 82 000 precursor was located only in intermediate density organelles, suggesting that the latter is a product of the former. Processed mature myeloperoxidase was concentrated in the granule fraction, but some occurred in lower density organelles, which may indicate processing during intracellular transport. Only the Mr 90 000 polypeptide was secreted into the culture medium; this was also the only form found in the cytosol fraction.  相似文献   

12.
The biosynthesis of myeloperoxidase in human promyelocytic leukemia HL-60 cells was studied by pulse-chase and immunoprecipitation methods and separation of subcellular organelles using Percoll density gradient fractionation. These studies revealed that in control and monensin (1 microM) treated cells, more than 85% of the total immunoprecipitable radiolabeled myeloperoxidase was present predominantly in precursor form (Mr 91,000) and resided in lower density compartments after an initial 3-h labeling period. Using biochemical and ultrastructural techniques, the lower density regions of the gradient were found to contain elements of the endoplasmic reticulum and the Golgi complex. Following a 16-h chase period, about 70% of the radiolabeled myeloperoxidase in untreated cells was found predominantly in denser regions of the gradient and was present mainly in the form of the mature large subunit (Mr 63,000). These dense regions were shown to contain azurophilic granules by means of the distribution of beta-glucuronidase and myeloperoxidase activities and by electron microscopy. Processing of myeloperoxidase and its deposition into dense granules were blocked by monensin treatment. Following a 16-h chase period in the presence of monensin, approximately 80% of the radiolabeled myeloperoxidase continued to reside in lower density compartments and was predominantly in precursor (Mr 91,000) and intermediate (Mr 81,000 and 74,000) forms. Only about 10% of the radiolabeled myeloperoxidase was associated with dense azurophilic granules. Monensin treatment produced large, Golgi-derived vacuoles which were isolated using Percoll density centrifugation and identified by electron microscopy. These vacuoles were found to be essentially devoid of peroxidase activity and pulse-labeled, newly synthesized radiolabeled myeloperoxidase species. The effects of monensin on transport and processing were reversible after a 3-h exposure and 16-h chase period in the absence of monensin. Taken together, these data indicate that maturation of myeloperoxidase is closely linked to its deposition into dense azurophilic granules via a monensin-sensitive process(es). The lower density compartments within which immature myeloperoxidase species accumulate in the presence of monensin appear to be functionally related to or associated with Golgi or endoplasmic reticulum structures distinct from the large monensin-induced vacuoles.  相似文献   

13.
Methylation and DNase I-hypersensitive sites of the myeloperoxidase gene in human myeloid leukemia HL-60 cells were studied by Southern blot hybridization using the myeloperoxidase gene probes. Digestion of DNA with a methylation-sensitive restriction endonuclease indicated that a CpG in the CCGG sequence located 3.53 kbp upstream of the myeloperoxidase gene was unmethylated in HL-60 cells expressing the gene, whereas it was methylated in K562 cells and human placenta not expressing the gene. The site in HL-60 cells remained unmethylated after retinoic acid- or 12-O-tetradecanoyl-phorbol-13-acetate-induced differentiation that arrests myeloperoxidase synthesis. Digestion of isolated nuclei with various amounts of DNase I indicated that four DNase I-hypersensitive sites were in an upstream region of the myeloperoxidase gene in HL-60 cells and three sites were within the gene. In retinoic acid-induced cells, the bands of the hypersensitive site near the 5' side of the gene and that in the first intron became weak, while that of the site in the fifth intron became strong. The bands of these hypersensitive sites were weak in K562 cells. The implications of these changes in tissue-specific expression and developmental down-regulation of the myeloperoxidase gene are discussed.  相似文献   

14.
The NADPH oxidase activity of polymorphonuclear leukocyte granules has not previously been attributed to myeloperoxidase because of its relative insensitivity to cyanide and its activation by aminotriazole. However it has been found that the NAD(P)H oxidase activity of myeloperoxidase or horseradish peroxidase was little affected by 2.0 mM cyanide although the peroxidase activity was nearly completely inhibited by 0.1 mM cyanide. Furthermore, the NAD(P)H oxidase activity of myeloperoxidase was considerably enhanced by aminotriazole although the peroxidase activity was inhibited.  相似文献   

15.
The heme protein myeloperoxidase is released from stimulated polymorphonuclear leukocytes, a cell species found in increasing amounts in the male and female genital tract of patients with genital tract inflammations. Myeloperoxidase binds only to a fraction of freshly prepared human spermatozoa. The number of spermatozoa able to bind myeloperoxidase raised considerably in samples containing pre-damaged cells or in acrosome-reacted samples. In addition, myeloperoxidase released from zymosan-stimulated polymorphonuclear leukocytes was also able to bind to pre-damaged spermatozoa. The ability of spermatozoa to bind myeloperoxidase coincided with the binding of annexin V to externalized phosphatidylserine epitopes indicating the loss of plasma membrane integrity and with the incorporation of ethidium homodimer I. Myeloperoxidase did not interact with intact spermatozoa. Annexin V and myeloperoxidase bind to the same binding sites as verified by double fluorescence techniques, flowcytometry analyses as well as competition experiments. We demonstrated also that myeloperoxidase is eluted together with pure phosphatidylserine liposomes or liposomes composed of phosphatidylserine and phosphatidylcholine in gel filtration, but not with pure phosphatidylcholine liposomes. In conclusion, myeloperoxidase interacts with apoptotic spermatozoa via binding to externalized phosphatidylserine indicating a yet unknown role of this protein in recognition and removal of apoptotic cells during inflammation.  相似文献   

16.
17.
The reaction of superoxide anions with myeloperoxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7), which results in the formation of Compound III of myeloperoxidase, was investigated. It is shown that myeloperoxidase has a high affinity for superoxide anions because formation of Compound III was only partially inhibited by high concentrations of superoxide dismutase. Furthermore, when superoxide anions were generated in a mixture of both cytochrome c and myeloperoxidase in the absence of Cl-, only Compound III was formed and reduction of cytochrome c was not observed. In the presence of Cl-, Compound III was also formed and reduction of cytochrome c was inhibited. From the results described in this paper we conclude that Compound III is able to react with superoxide anions, probably resulting in formation of an intermediate (Compound I) which is catalytically active in the oxidation of Cl- to yield hypochlorous acid (HOCl). Because Compound III of myeloperoxidase is formed in phagocytosing neutrophils (Winterbourn, C.C., Garcia, R.C. and Segal, A.W. (1985) Biochem. J. 228, 583-592) we propose that, in vivo, myeloperoxidase also acts as a superoxide dismutase, and via formation of Compound I uses superoxide anions in the formation of HOCl.  相似文献   

18.
Processing and localization of myeloperoxidase was studied in nonmyeloid cells. For this purpose BHK cells were transfected with human myeloperoxidase cDNA. In the transfected cells a protein with mol wt of 85,000 was found, which reacted with the specific anti-human myeloperoxidase antiserum. In size and in sensitivity to endo-beta-N-acetylglucosaminidase H this protein resembled the myeloperoxidase precursor synthesized in human promyelocytes. Unlike in the promyelocytes, in BHK cells the 85,000-Da protein was not converted to 60,000- and 14,000-Da polypeptides of the mature enzyme. In Percoll gradients the protein was found predominantly in the light membrane fractions. Microscopic examination revealed a conspicuous immune reaction over the endoplasmic reticulum and nuclear membranes and a moderate labeling over lysosome-like organelles. Pulse-chase experiments indicated that the protein was slowly released from the endoplasmic reticulum; after 1 day the protein was found in similar amounts in cells and in the medium. The secreted protein contained at least one endo-beta-N-acetylglucosaminidase-resistant oligosaccharide. It is suggested that normal intracellular segregation of myeloperoxidase depends on a signal or component, which is not or incompletely expressed in BHK cells.  相似文献   

19.
Using pulse radiolysis, the rate constant for the reaction of ferric myeloperoxidase with O2- to give compound III was measured at pH 7.8, and values of 2.1.10(6) M-1.s-1 for equine ferric myeloperoxidase and 1.1.10(6) M-1.s-1 for human ferric myeloperoxidase were obtained. Under the same conditions, the rate constant for the reaction of human ferric myeloperoxidase with H2O2 to give compound I was 3.1.10(7) M-1.s-1. Our results indicate that although the reaction of ferric myeloperoxidase with O2- is an order of magnitude slower than with H2O2, the former reaction is sufficiently rapid to influence myeloperoxidase-dependent production of hypochlorous acid by stimulated neutrophils.  相似文献   

20.
Leukocytes, principally polymorphonuclear leukocytes (PMNs), enter the oral cavity where they release a portion of their constituents, including myeloperoxidase, into oral fluids. A greater number of PMNs in the oral cavity are associated with oral inflammation. However, the quantitative contribution of the PMN to oral fluids, including saliva, during various conditions is poorly understood. An assay method based on the adsorbance loss at 278 nm from the reaction of the myeloperoxidase product hypochlorous acid with monochlorodimedon to yield dichlorodimedon was developed for the quantitation of salivary myeloperoxidase. Myeloperoxidase was determined in supernatants of whole saliva obtained at low and moderate flow rates and in parotid saliva collected during moderate and pronounced stimulation from young adults with minimal oral inflammation. The greatest myeloperoxidase activity was in whole saliva supernatants collected at low flow rates where PMN products have an opportunity to accumulate. Lesser quantities of myeloperoxidase were found in both the whole saliva supernatants and parotid saliva obtained at the faster flow rates. Low flow rate whole saliva supernatants contained about 25% of the myeloperoxidase in the PMNs which enter the oral cavity. Myeloperoxidase is responsible for a significant portion (15-20%) of the total peroxidase activity in supernatants of whole saliva obtained at low flow rates. Preliminary results indicate that young adults with phenytoin-associated gingival overgrowth or who smoke have more myeloperoxidase activity in low flow rate whole saliva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号