首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New bioanalytical SPE-HPLC-PDA-FL method for the determination of the neuroleptic drug tiapride and its N-desethyl metabolite was developed, validated and applied to xenobiochemical and pharmacokinetic studies in humans and animals. The sample preparation process involved solid-phase extraction of diluted plasma spiked with sulpiride (an internal standard) using SPE cartridges DSC-PH Supelco, USA. Chromatographic separation of the extracts was performed on a Discovery HS F5 250 mm × 4 mm (Supelco) column containing pentafluorophenylpropylsilyl silica gel. Mobile phase (acetonitrile-0.01 M phosphate buffer pH=3, flow rate 1 ml min(-1)) in the gradient mode was employed in the HPLC analysis. Tandem UV photodiode-array→fluorescence detection was used for the determination of the analytes. Low concentrations of tiapride and N-desethyl tiapride were determined using a more selective fluorescence detector (λ(exc.)/λ(emiss.)=232 nm/334 nm), high concentrations (500-6000 pmol ml(-1)) using a UV PDA detector at 212 nm with a linear response. Each HPLC run lasted 15 min. Lower limits of quantification (LLOQ) for tiapride (N-desethyl tiapride) were found to be 8.24 pmol ml(-1) (10.11 pmol ml(-1)). The recoveries of tiapride ranged from 89.3 to 94.3%, 81.7 to 86.8% for internal standard sulpiride and 90.9 to 91.8% for N-desethyl tiapride.  相似文献   

2.
3.
A high-performance liquid chromatographic method has been developed for the analysis of the novel antiparasitic agent, licochalcone A (Lica), and three of its glucuronic acid conjugates in plasma and urine. The high-performance liquid chromatography assay was performed using gradient elution and UV detection at 360 nm. The proposed technique is selective, reliable and sensitive. The limits of quantification for Lica are 0.2 μg/ml in plasma and 0.14 μg/ml in urine, 1.2 μg/ml for the 4′-glucuronide in plasma and 1.4 μg/ml in urine, and 2.0 μg/ml for the 4-glucuronide in plasma and 3.2 μg/ml in urine. The reproducibility of the analytical method according to the statistical coefficients is 7% or below. The accuracy of the method is good, that is, the relative error is below 10%. The stability of Lica and its glucuronides in urine and plasma samples has been assessed during storage in the autosampler and freezer. The applicability of the assay for determining Lica and its intact glucuronide conjugates in biological fluids was shown using a single dose study in rat.  相似文献   

4.
A sensitive and selective high-performance liquid-chromatographic assay for ibuprofen and its major metabolites in biological fluids is described. To ensure good chromatographic separation the drug and metabolites were run on a gradient elution system and detected with a variable wavelength detector set at 220 nm. A second, more rapid, isocratic system is also described for the detection of only ibuprofen.  相似文献   

5.
A rapid, non-radioactive method to quantitate therapeutically realistic levels of 1-β--arabinofuranosylcytosine (Ara-C) and its metabolites would be useful both in the clinic, for monitoring drug levels, and in the laboratory for correlating drug levels with cellular and molecular perturbations. Liquid chromatographic analysis of arabinose-nucleoside analogs in biological samples is complicated by the presence of interfering nucleosides and nucleotides. We report the development of two analytic procedures to measure Ara-C and metabolite levels in biological samples. One method uses a quaternary ammonium type anion-exchange resin to achieve isocratic separation in less than one hour. The second method utilizes a boronate-derivatized polyacrylamide column which binds cis-diols to selectively retain cytosine and uridine, while arabinose compounds are eluted with recovery approaching 100%. The eluted compounds are then easily quantitated on a reversed-phase C15 column. The sensitivity of both procedures was sufficient to obtain pharmacokinetic data on Ara-C and uracil-arabinose levels in serum and urine and on Ara-C triphosphate levels in tumor cells.  相似文献   

6.
7.
A simple and highly sensitive method for the determination of beta-phenylethylamine in human plasma is investigated. The method employs high-performance liquid chromatography with fluorescence detection. beta-Phenylethylamine and p-methylbenzylamine (internal standard) in human plasma are isolated by cation-exchange chromatography on a Toyopak SP cartridge and then converted into the corresponding fluorescent derivatives with 3,4-dihydro-6,7-dimethoxy-4-methyl-3-oxoquinoxaline-2-carbonyl chloride, a fluorescence derivatization reagent for amines. The derivatives are separated within 30 min on a reversed-phase column, TSK gel ODS-120T, with isocratic elution, and detected fluorometrically. The detection limit of beta-phenylethylamine is 0.3 pmol/ml in plasma (S/N = 3).  相似文献   

8.
A selective and sensitive method for the determination of gentamicin in plasma and urine by high-performance liquid chromatography has been developed. Following deproteinization, the gentamicin is reacted with fluorescamine to produce a fluorescent derivative. This reaction mixture is directly chromatographed on a cation-exchange column using as mobile phase acetonitrile—phosphoric acid (7:3). The gentamicin components elute as a single peak. Using 0.1 ml of plasma, quantitation of gentamicin concentrations as low as 1 mg/l are possible. Possible interference from other aminoglycosides and antibiotics is discussed.  相似文献   

9.
An accurate and sensitive high-performance liquid chromatographic method with UV detection was developed for the simultaneous measurement of monoethylglycinexylidide (MEGX) and lignocaine in human plasma and serum, using organic solvent extraction and trimethoprim (TMP) as an internal standard. The mean recoveries for MEGX, TMP and lignocaine were 86.1 ± 3.7, 98.3 ± 1.8 and 77.0 ± 4.7%, respectively (n = 6). The relative standard deviations for MEGX concentrations of 10 and 200 ng/ml were < 4% and for lignocaine concentrations of 200 and 1200 ng/ml they were < 8%.  相似文献   

10.
A high-performance liquid chromatographic (HPLC) method for the determination of histamine in tissues, based on precolumn derivation with o-phthalaldehyde, is described. Trichloroacetic acid extracts of rat brain, but not of rat stomach or of rat peritoneal mast cells, had to be cleaned-up by a chromatographic step before HPLC. The extracts were allowed to react with o-phthalaldehyde at pH 12.5 and -20 degrees C for 12 h, followed by acidification to pH 2.0. HPLC was performed on a reverse-phase column with isocratic elution using sulfuric acid in methanol as solvent system. A fluorescence detection system was used; excitation was set at 353 nm and emission was read at 451 nm. One chromatographic run was completed in 20 min. The detection limit with the conventional procedure was 1.5 ng histamine per sample, with a scaled-down procedure it was 250 pg per sample. With extracts of rat gastric mucosa the within-run variation was 2.7% and the day-to-day variation 4.5%.  相似文献   

11.
A novel sensitive high-performance liquid chromatography-electrospray mass spectrometry method has been developed for the determination of ursodeoxycholic acid (UDCA) and its glycine and taurine conjugates, glycoursodeoxycholic acid (GDCA) and tauroursodeoxycholic acid (TDCA). The procedure involved a solid phase extraction of UDCA, GDCA, TDCA and the internal standard, 23-nordeoxycholic acid from human plasma on a C18 Bond Elut cartridge. Chromatography was performed by isocratic reverse phase separation with methanol/25 mM ammonium acetate (40/60, v/v) containing 0.05% acetic acid on a C18 column with embedded polar functional group. Detection was achieved using an LC-MS/MS system. The standard curve was linear over a working range of 10-3000 ng/ml for all analytes and gave an average correlation coefficient of 0.9992 or better during validation. The absolute recovery for UDCA, GDCA, TDCA and the internal standard was 87.3, 83.7, 79.5 and 95.8%, respectively. This method is simple, sensitive and suitable for pharmacokinetics, bioequivalence or clinical studies.  相似文献   

12.
A selective and sensitive reversed-phase liquid chromatographic method for the analysis of thiopurine bases, nucleosides and nucleotides in biological samples was developed. A simple and rapid sample treatment procedure using perchloric acid deproteinization with dithiothreitol for the analysis of thiopurine bases and nucleosides is presented. The addition of dithiothreitol during sample collection and treatment improves recoveries. This procedure also allows the determination of thiopurine nucleotides by hydrolysis to their free bases after heating of the perchloric acid extract. The method was applied to the analysis of thiopurine metabolites in plasma and erythrocytes from lung-transplant patients under azathioprine therapy.  相似文献   

13.
14.
15.
A rapid, sensitive, and specific high-performance liquid chromatographic method is described for the quantitative analysis of sulfinpyrazone and its sulfone and p-hydroxy metabolites in plasma and urine. The method uses two different procedures for sample preparation: (1) a rapid and convenient procedure using a single extraction with 1-chlorobutane and subsequent back-extraction into sodium hydroxide solution for the analysis of sulfinpyrazone and its sulfone metabolite, and (2) a more time consuming procedure using triple extraction with ethylene dichloride, a buffer wash, and back extraction into the base for the additional analysis of the p-hydroxy metabolite. The lower limit of sensitivity for sulfinpyrazone is 50 ng/ml. Concentrations of sulfinpyrazone between 0.05 to 0.1 and 50 μg/ml were measured with an average coefficient of variation of 3.9%, ranging from 1.5 to 6.1%.  相似文献   

16.
A high-performance liquid chromatographic method for the fluorometric determination of 1,2,3,4-tetrahydroisoquinoline in rat brain is described. 1,2,3,4-Tetrahydroisoquinoline and 4-phenylpiperidine (internal standard) are isolated by liquid-liquid extraction, and then converted into the corresponding fluorescent derivatives with 3,4-dihydro-6,7-dimethoxy-4-methyl-3-oxoquinoxaline-2-carbonyl chloride, a fluorescence derivatization reagent for amines. The derivatives are separated within 60 min on a reversed-phase column, TSK gel ODS-120T, with isocratic elution, and detected fluorometrically. The detection limit of 1,2,3,4-tetrahydroisoquinoline is 1.0 pmol/g in rat brain (S/N = 3).  相似文献   

17.
A simple HPLC method with photodiode-array (PDA) ultraviolet detection was developed for the simultaneous determination of four active polyphenol components of hawthorn (Crataegus), chlorogenic acid, epicatechin, hyperoside and isoquercitrin, in rat plasma. Following extraction from the plasma samples with ethyl acetate–methanol (2:1, v/v), these four compounds were successfully separated using a C18 column with a gradient elution of 5 and 25% acetonitrile in 25 mM phosphate buffer (pH 2.4). The flow-rate was set at 1 ml/min and the eluent was detected at 325 nm for chlorogenic acid, 278 nm for epicatechin, and 360 nm for both hyperoside and isoquercitrin. Narignin (0.82 μg) was used as the internal standard and was detected at 278 nm. The method is linear over the studied range of 0.16–40, 0.63–160, 0.13–32 and 0.13–30 μg/ml for chlorogenic acid, epicatechin, hyperoside and isoquercitrin, respectively. The correlation coefficient for each analyte was greater than 0.995. The intra-day and inter-day precision of the analysis was better than 4 and 7%, respectively. The extraction recoveries at low to high concentration were greater than 85% for both epicatechin and chlorogenic acid, and greater than 94% for both hyperoside and isoquercitrin. The detection limits were 0.04, 0.20, 0.03 and 0.03 μg/ml for chlorogenic acid, epicatechin, hyperoside and isoquercitrin. The developed method was used to analyze the plasma concentrations of the four analytes after the intravenous administration of hawthorn polyphenol extract to rats.  相似文献   

18.
This paper reports a two-step high-performance liquid chromatographic procedure which permits the study of the incorporation of [3H]leucine into insulin in biological systems. The first step of the procedure was size exclusion chromatography, performed on a GPC-100 column, which was eluted with 0.1 M KH2PO4—methanol (9:1, v/v). By this step the bulk of both protein and radioactivity was separated from tritiated insulin. The second step, which employs reversed-phase chromatography on an octadecylsilyl column, permits the separation of insulin from other contaminants by means of a linear gradient of acetonitrile. This simple and reproducible method was employed to test insulin synthesis in cultured human retinoblastoma Y79 cells.  相似文献   

19.
A sensitive, quantitative reversed-phase high-performance liquid chromatographic method has been established for the simultaneous determination of butorphanol, a synthetic opioid, and its metabolites, hydroxybutorphanol and norbutorphanol, in human urine samples. The method involved extraction of butorphanol, hydroxybutorphanol, and norbutorphanol from urine (1.0 ml), buffered with 0.1 ml of 1.0 M ammonium acetate (pH 6.0), onto 1-ml Cyano Bond Elut columns. The eluent was evaporated under nitrogen and low heat, and reconstituted with the HPLC mobile phase, acetonitrile—methanol—water (20:10:70, v/v/v), containing 10 mM ammonium acetate and 10 mM TMAH (pH 5.0). The samples were chromatographed on a reversed-phase octyl 5-μm column. The analysis was accomplished by detection of the fluorescence of the three analytes, at excitation and emission wavelengths of 200 nm and 325 nm, respectively. The retention times for hydroxybutorphanol, norbutorphanol, the internal standard, and butorphanol were 5.5, 9.0, 13.0, and 23.4 min respectively. The validated quantitation range of the method was 1–100 ng/ml for butorphanol and hydroxybutorphanol, and 2–200 ng/ml for norbutorphanol in urine. The observed recoveries for butorphanol, hydroxybutorphanol, and norbutorphanol were 93%, 72%, and 50%, respectively. Standard curve correlation coefficients of 0.995 or greater were obtained during validation experiments and analysis of study samples. The method was applied on study samples from a clinical study of butorphanol, providing a pharmacokinetic profiling of butorphanol.  相似文献   

20.
Irinotecan (CPT-11), a camptothecin analog, is metabolized to SN-38, an active topoisomerase I inhibitor, and inactive metabolites, including APC and SN-38 glucuronide (SN-38G). A high-performance liquid chromatographic assay method to simultaneously measure the lactone and carboxylate forms of CPT-11, SN-38, SN-38G, and APC in human plasma was developed. Chromatography was accomplished with a reversed-phase C(8) column and fluorescence detection. A gradient mobile phase system was used. The buffer for mobile phase A consisted of 0.75 M ammonium acetate, 5 mM tetrabutylammonium phosphate (pH 6.0), and acetonitrile (86:14, v/v). The buffer for mobile phase B was identical to mobile phase A with the exception of the concentration (50:50, v/v). Precipitation of plasma proteins was performed with cold methanol. The linear range of detection of the lactone and carboxylate forms of SN-38, SN-38G, and APC was 2-25 ng/ml, and 5-300 ng/ml for CPT-11. The limit of quantitation for the analytes ranged from 0.5 to 5 ng/ml. Analysis of patients' plasma samples obtained before and after CPT-11 administration showed that the assay is suitable for measuring lactone and carboxylate forms of CPT-11, SN-38, SN-38G, and APC in clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号