首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internalization of cationized ferritin by isolated pancreatic acinar cells   总被引:2,自引:0,他引:2  
The internalization of cationized ferritin (CF) was studied in isolated pancreatic acinar cells in vitro. Horseradish peroxidase (HRP) was used in conjunction with CF to compare internalization of soluble-phase and membrane-bound tracers. The mode of internalization of CF was dependent upon tracer concentration and origin of the plasma membrane (apical vs. lateral-basal). At the lower tracer concentrations (0.19 and 0.38 mg/ml), internalization from the apical cell surface occurred via small vesicles. The tracer then appeared in multivesicular bodies, in tubules, and in irregular membrane-bound structures. After 15 min, CF particles were seen in many small vesicles near the Golgi apparatus, but not in the Golgi saccules. In contrast, at the lateral-basal cell surface the CF particles tended to form clusters. These clusters were more pronounced at higher CF concentrations (0.76 and 1.5 mg/ml) and were associated with elongated cellular processes, which seemed to engulf CF accumulations in a phagocytic manner. Once internalized, CF was found primarily in large irregular structures which appeared to migrate slowly toward the nucleus, reaching a juxtanuclear position after approximately 30 min. CF was observed in lysosomes after 30-45 min and by 90 min most of the CF was confined to large vacuoles and to trimetaphosphatase-positive lysosomes. Similar routes were observed when cells were double-labeled with CF and HRP, where endocytic structures showed co-localization of both tracers. The results of this study indicate the importance of the Golgi region in the intracellular sorting of internalized apical membrane. Furthermore, this work confirms the presence of distinct endocytic pathways at the apical and lateral-basal cell surfaces.  相似文献   

2.
Summary The endodermal trophotaenial epithelium in goodeid embryos acts as a placental exchange site. Fine structural and cytochemical data indicate that the trophotaenial absorptive cells are endocytotically highly active. To test their micropinocytotic capacity and characterize the cellular mechanisms involved in membrane, solute and ligand movements, living embryos of Xenoophorus captivus were incubated in saline media containing horseradish peroxidase (HRP) and/or cationized ferritin (CF) in vitro, and the uptake of these tracer proteins examined by both time sequence analysis and pulse-chase procedures. In some embryos, the effects of prolonged exposure to CF injected into the ovarian cavity, was also investigated.Labelling of the free cell surface was detectable with CF only, but interiorization of both probes was quick from all incubation media. Adsorptive pinocytosis of CF and fluid-phase uptake of HRP sequentially labelled pinocytic vesicles, endosomes, and lysosome-like bodies. In addition, CF-molecules were sequestered within apical tubules and small vesicles. HRP was largely excluded from both organelles and ended up in the lysosomal compartment. For CF, two alternative pathways were indicated by the pulse-chase experiments; transcellular passage and regurgitation of tracer molecules to the apical cell surface. The latter procedure involves membrane and receptor recycling, in which apical tubules are thought to mediate.In double-tracer experiments, using an 81 excess of HRP, external labelling with CF was light or lacking after 1–3 min, and the initial uptake-phase produced pinocytic vesicles and endosomes that mainly contained HRP-reaction product. Prolonged incubation, however, resulted in densely CF-labelled plasmalemmal invaginations and pinocytic vesicles that predominantly carried ferritin granules. After 60 min, the vacuoles of the endosomal compartment contained either high concentrations of HRP-reaction product, both tracers side by side, or virtually exclusively CF.  相似文献   

3.
P Kugler  A Miki 《Histochemistry》1985,83(4):359-367
The internalization and intracellular movements of apical-cell-membrane material were investigated in the endodermal cells of cultured visceral yolk-sacs of rats (whole-embryo culture; explanted at 10.5 days of gestation and cultured for 24 h) using horseradish peroxidase- and ferritin-labelled concanavalin A (Con-A HRP, Con-A Fer). When visceral yolk-sac endoderm was exposed to Con-A HRP or Con-A Fer for 5 min at 4 degrees C, the apical cell membranes containing a well-developed fuzzy coat were heavily labelled, whereas apical vacuoles, lysosomes and apical canaliculi were not. Incubation of Con-A-labelled endoderm for 5-60 min at 20 degrees and 37 degrees C in Con-A-free serum resulted in a temperature-dependent internalization of membrane-bound lectin into coated vesicles, apical vacuoles and lysosomes, and the apical cell membranes were cleared of the heavy labelling. With increasing incubation time, the number of labelled vacuolar structures and the intensity of their labelling decreased gradually, whereas the number of labelled apical canaliculi increased. Thus, after 30 and 60 min at 37 degrees C, most of the apical canaliculi contained high concentrations of the markers. It was possible to observe labelled apical canaliculi that were in continuity with labelled apical vacuoles and lysosomes as well as with the apical cell membrane. These findings in rat endodermal cells indicate that constituents of the apical cell membrane are internalized in apical vacuoles and lysosomes, and are then brought back to the apical cell membrane by the apical canaliculi, which concentrate and store this membrane material.  相似文献   

4.
Summary The internalization and intracellular movements of apical-cell-membrane material were investigated in the endodermal cells of cultured visceral yolk-sacs of rats (whole-embryo culture; explanted at 10.5 days of gestation and cultured for 24h) using horseradish peroxidase- and ferritin-labelled concanavalin A (Con-A HRP, Con-A Fer). When visceral yolk-sac endoderm was exposed to Con-A HRP or Con-A Fer for 5 min at 4°C, the apical cell membranes containing a well-developed fuzzy coat were heavily labelled, whereas apical vacuoles, lysosomes and apical canaliculi were not. Incubation of Con-A-labelled endoderm for 5 60 min at 20° and 37°C in Con-A-free serum resulted in a temperature-dependent internalization of membranebound lectin into coated vesicles, apical vacuoles and lysosomes, and the apical cell membranes were cleared of the heavy labelling. With increasing incubation time, the number of labelled vacuolar structures and the intensity of their labelling decreased gradually, whereas the number of labelled apical canaliculi increased. Thus, after 30 and 60 min at 37°C, most of the apical canaliculi contained high concentrations of the markers. It was possible to observe labelled apical canaliculi that were in continuity with labelled apical vacuoles and lysosomes as well as with the apical cell membrane. These findings in rat endodermal cells indicate that constitutents of the apical cell membrane are internalized in apical vacuoles and lysosomes, and are then brought back to the apical cell membrane by the apical canaliculi, which concentrate and store this membrane material.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

5.
Horseradish peroxidase uptake and crinophagy in insulin-secreting cells   总被引:3,自引:0,他引:3  
Upon exposure of pancreatic B cells to exogenous horseradish peroxidase (HRP), a population of secretory granules becomes HRP-labelled. In isolated islets of Langerhans, we studied the fate of HRP-labelled secretory granules during a pulse-chase experiment with HRP in order to assess their relationship with lysosomes containing secretory granule cores. These structures (crinophagic or multigranular bodies) were previously shown to be a site of insulin degradation (Orci et al., J cell biol 98 (1984) 222) [4]. After a 15-min pulse of peroxidase, the number and volume density of HRP-labelled secretory granules decreased over an 85-min chase period, during which the number and volume density of multigranular bodies labelled with HRP was significantly increased. At both time points, the surface density of HRP-labelled Golgi elements was very small compared with that of unlabelled ones. By autoradiography after a 5-min pulse of [3H]leucine and a 55-min chase, followed by a 15-min pulse of HRP and a 85-min chase, we could show that the majority of HRP-containing secretory granules were not radioactively labelled granules. These results suggest that: The low degree of HRP labelling of the Golgi makes it unlikely that secretory granules derive their HRP by budding from HRP-labelled cisternae. HRP-labelled SGs are preferentially transferred to MGBs (which become HRP-labelled) for prospective degradation. HRP labelling does not involve newly-formed mature secretory granules.  相似文献   

6.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

7.
To examine whether and how internalized plasma membrane components are routed to the compartment of the biosynthetic-exocytic pathway in cultured atrial myocytes, the plasma membrane labeled with wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was traced electron microscopically by cytochemical detection of HRP. The WGA-HRP label was internalized via a coated pit-small vesicle pathway and reached vacuoles and endosomes by 3 min. Labeled endosomes comprised vacuoles and tubular elements containing reaction product. By 15 min, similar tubular structures containing reaction product accumulated in the area of the trans-Golgi network (TGN). The labeled TGN consisted of interconnected tubular elements, which often connected to atrial granules containing reaction product. In contrast, neither native HRP nor Lucifer Yellow reached Golgi elements or atrial granules. These results suggest that a proportion of the plasma membrane labeled with WGA-HRP is delivered to endosomes, from which tubules might bud off to transfer the tracer molecules to the TGN, where the lectin conjugate and associated membranes are packaged into atrial granules.  相似文献   

8.
    
Summary The effect of monensin on the Golgi complex, formation of secretory granules and basal -endorphin secretion in cultured melanotrophs from the rat pituitary was studied. Earlier studies on the effect of monensin on regulated secretion have generally showed only minor effects on secretory granules. The initial (within 5 min) effect of monensin on the melanotroph was the appearance of large vacuoles at the trans-side of the thiamine pyrophosphatase-positive trans-most Golgi cisternae. This was associated with a dose-dependent inhibition of the condensation of electron-dense secretory products. After 1 h of treatment with 1 M monensin the Golgi stack was completely vacuolized. At the same time mature secretory granules were enlarged to severalfold their original size, and after 4h of treatment secretory granules were no longer observed. Despite the marked effects on granule formation and mature secretory granules monensin did not affect the basal release of -endorphin-immunoreactive material during continued incubation for up to 4h, indicating that basal peptide secretion can bypass the monensin block.  相似文献   

9.
We examined the uptake and fate of four horseradish peroxidase (HRP) isozymes (Type VI, VII, VIII, and IX) in isolated pancreatic acinar cells. The pattern of uptake was similar for all the isozymes examined, with the exception of Type IX. Very little Type IX HRP was internalized by the cells, and what endocytosis did occur was primarily from the apical cell surface in coated vesicles. In contrast, HRP Type VI, VII, and VIII appeared to be endocytosed largely at the basolateral cell surface. Initially, the tracer was found in smooth vesicles and tubules near the plasma membrane. The tubules resembled the basal lysosomes known to be present in these cells. At the early time points, HRP reaction product was also present in multivesicular bodies (MVBs). By 60 min, the HRP was localized in MVBs, vesicles, and tubules adjacent to the Golgi apparatus. By 12 hr after exposure to the isozymes, the tracer was present in small apical vesicles. At no time could reaction product be localized in the rough endoplasmic reticulum, Golgi saccules, or secretory granules. The results of this study suggest that the charge of a soluble-phase marker has little effect on its uptake or intracellular distribution.  相似文献   

10.
Summary The ileal absorptive cells of suckling rats exhibit high levels of endocytic activity being engaged in nonselective uptake of macromolecules from the intestinal lumen. The apical cytoplasm usually contains an extensive network of small, membrane-limited tubules (apical tubules: AT), in addition to newly formed endocytic vesicles and large endocytic vacuoles. To determine whether the AT are directly involved in the endocytic process by carrying the tracer into the cell, we have analysed movements of the apical cell membrane of the ileal absorptive cells by using a membrane-bound tracer (horseradish peroxidase-labelled cancanavalin-A: Con-A HRP). The ileal absorptive cells were exposed in vitro to Con-A HRP for 10 min at 4° C, incubated for different times in Con-A free medium at 37° C, and prepared for electron microscopy. After 1 min incubation at 37° C, invaginations of the apical cell membrane, including coated pits, and endocytic vesicles were labelled with HRP-reaction product, whereas the AT and large endocytic vacuoles were negative. After 2.5 min, almost all the large endocytic vacuoles were labelled with reaction product, which was seen in their vacuolar lumen and along the luminal surface of their limiting membrane. A few AT with reaction product were seen in the apical cytoplasm; they were in frequent connection with the reaction-positive large endocytic vacuoles. With increasing incubation time, the number of the labelled AT increased. Thus, after 15 min at 37° C, the apical cytoplasm was fully occupied by the reaction-positive AT. The ends of these AT were often continuous with small spherical coated vesicles. No reaction product was detected in the Golgi complex at any time after incubation. These observations indicate that the AT located in the apical cytoplasm probably originate by budding off from the large endocytic vacuoles, rather than being involved in the process of endocytosis.  相似文献   

11.
Mouse L-fibroblasts internalized large amounts of cationized ferritin (CF) by pinocytosis. Initially (60-90 s after addition of CF to cell monolayers at 37 degrees C), CF was found in vesicles measuring 100-400 nm (sectioned diameter) and as small clusters adhering to the inner aspect of the limiting membrane of a few large (greater than 600 nm) vacuoles. After 5-30 min, CF labeling of large vacuoles was pronounced and continuous. Moreover, 70-80% of all labeled structures were tiny (less than 100 nm) vesicles. However, the absolute frequency of tiny vesicles increased more than twofold from 5 min to 30 min. When the cells were incubated with CF for 30 min, then washed and further incubated for 3 h without CF, almost all CF was present in dense bodies (100-500 nm). When L-cells were first incubated with horseradish peroxidase (HRP), then washed and incubated with CF, double-labeled vacuoles were observed. Tiny vesicles also contained HRP-CF, and small HRP-CF patches were localized on the cell surface. Distinct labeling of stacked Golgi cisterns was not observed in any experiment. These observations suggest that the numerous tiny vesicles are not endocytic but rather pinch off from the large vacuoles and move towards the cell surface to fuse with the plasma membrane. Thus, ultrastructural evidence is provided in favor of a direct membrane shuttle between the plasma membrane and the lysosomal compartment.  相似文献   

12.
The exocytotic exposure and retrieval of an antigen of chromaffin granule membranes were studied with chromaffin cells isolated from bovine adrenal medulla. Cells were incubated with an antiserum against glycoprotein III followed by fluorescein- or gold-labeled anti-IgG. Immunofluorescence on the cell surface was present in a patchy distribution irrespective of whether bivalent antibodies or Fab fragments were used. During subsequent incubation these fluorescent membrane patches were internalized within 45 min. At the ultrastructural level immunogold-labeled patches were present on the surface of stimulated cells. During incubation (5 min to 6 h) these immunolabeled membrane patches became coated, giving rise to coated vesicles and finally to smooth vesicles. These latter vesicles were found spread throughout the cytoplasm including the Golgi region, but Golgi stacks did not become labeled. Part of the immunolabel was transferred to multivesicular bodies, which probably represent a lysosomal pathway. 30 min after incubation immunolabel was also found in electron-dense vesicles apparently representing newly formed chromaffin granules. After 6 h of incubation immunolabel was found in vesicles indistinguishable from mature chromaffin granules. These results provide direct evidence that after exocytosis membranes of chromaffin granules are selectively retrieved from the plasma membrane and are partly recycled to newly formed chromaffin granules, providing a shuttle service from the Golgi region to the plasma membrane.  相似文献   

13.
The nonciliated cells lining the ductuli efferentes presented three distinct cytoplasmic regions. The apical region contained, in addition to cisternae of endoplasmic reticulum and mitochondria, two distinct membranous elements. The tubulovesicular system consisted of dilated tubules connected to the apical plasma membrane and subjacent distended vesicular profiles. The apical tubules, not connected to the cell surface, consisted of numerous densely stained tubules of small size which contain a compact, finely granulated material. The supranuclear region, in addition to a Golgi apparatus and ER cisternae, contained dilated vacuoles, pale and dense multivesicular bodies, as well as numerous dense granules identified cytochemically as lysosomes. The basal region contained the nucleus and many lipid droplets. The endocytic activity of these cells was investigated using cationic ferritin (CF) and concanavalin-A-ferritin (Con-A-ferritin) as markers of adsorptive endocytosis; and native ferritin (NF), concanavalin-A-ferritin in the presence of alpha-methyl mannoside, and horseradish peroxidase or albumin bound to colloidal gold for demonstrating fluid-phase endocytosis. These tracers were injected separately into the rete testis, and animals were sacrificed at various time intervals after injection. At 1 min, CF or Con-A-ferritin were seen bound to the apical plasma membrane, to the membrane of microvilli, and to the membrane delimiting elements of the tubulovesicular system. Between 2 and 5 min, these tracers accumulated in the densely stained apical tubules and at 15 min in the dilated vacuoles. Between 30 min and 1 hr, the tracers appeared in multivesicular bodies of progressively increasing density, whereas at 2 hr and later time intervals, many dense lysosomal elements became labeled. The tracers for fluid-phase endocytosis showed a distribution similar to that for CF or Con-A-ferritin except that they did not bind to the apical plasma membrane, microvilli, or membrane delimiting the tubulovesicular system. At no time interval were any of the tracers observed in the abluminal spaces. Thus, the nonciliated epithelial cells of the ductuli efferentes are actively involved in fluid-phase and adsorptive endocytosis, both of which result in the sequestration of endocytosed material within the lysosomal apparatus of the cell.  相似文献   

14.
Internalization of lectins in neuronal GERL   总被引:29,自引:16,他引:13       下载免费PDF全文
Conjugates of ricin agglutinin and phytohemagglutinin with horseradish peroxidase (HRP) were used for a cytochemical study of internalization of their plasma membrane "receptors" in cultured isolated mouse dorsal root ganglion neurons. Labeling of cells with lectin-HRP was done at 4 degrees C, and internalization was performed at 37 degrees C in a culture medium free of lectin-HRP. 15-20 min after incubation at 37 degrees C, lectin-HRP receptor complexes were seen in vesicles or tubules located near the plasma membrane. After 1-3 h at 37 degrees C, lectin-HRP-receptor complexes accumulated in vesicles and tubules corresponding to acid phosphatase-rich vesicles and tubules (GERL) at the trans aspect of the Golgi apparatus. A few coated vesicles and probably some dense bodies contained HRP after 3-6 h of incubation at 37 degrees C. Soluble HRP was not endocytosed under the conditions of this experiment or when it was present in the incubation medium at 37 degrees C. Internalization of lectin-HRP-receptor conjugates was decreased or inhibited by mitochondrial respiration inhibitors but not by cytochalasin B or colchicine. These studies indicate that lectin- labeled plasma membrane moieties of neurons are endocytosed primarily in elements of GERL.  相似文献   

15.
Activation of the teleost (Brachydanio) fish egg includes the exocytosis of cortical granules, the construction of a mosaic surface consisting of the unfertilized egg plasma membrane and the limiting membranes of the cortical granules, and the appearance of coated and smooth vesicles in the cytoplasm (Donovan and Hart, '82). Unfertilized and activated eggs were incubated in selected extracellular tracers to (1) determine experimentally if cortical granule exocytosis was coupled with the endocytosis of membrane during the cortical reaction, and (2) establish the intracellular pathway(s) by which internalized vesicles were processed. Unfertilized eggs incubated in dechlorinated tap water or Fish Ringer's solution containing either horseradish peroxidase (HRP; 10 mg/ml), native ferritin (12.5 mg/ml), or cationized ferritin (12.5 mg/ml) were activated as judged by cortical granule breakdown and elevation of the chorion. Cells treated with HRP and native ferritin exhibited a delay in cortical granule exocytosis when compared with water-activated eggs lacking the tracer. Each tracer was internalized through the formation of a coated vesicle from a coated pit. Since coated pits appeared to be topographically restricted to the perigranular membrane domain of the mosaic egg surface, their labeling, particularly with cationized ferritin, strongly suggested that the retrieved membrane was of cortical granule origin. Cationized ferritin and concanavalin A (Con A) coupled with either hemocyanin or ferritin labeled the surface of the unactivated egg and both domains of the mosaic egg surface. Transformation of the deep evacuated cortical granule crypt into later profiles of exocytosis was accompanied by increased Con A binding. Within activated egg cortices, HRP reaction product, native ferritin, and cationized ferritin were routinely localized in smooth vesicles, multivesicular bodies, and autophagic vacuoles. Occasionally, each tracer was found in small coated vesicles adjacent to the Golgi and within Golgi cisternae. The intracellular distribution of HRP, native ferritin, and cationized ferritin suggests that internalized membrane is primarily processed by organelles of the lysosomal compartment. A second and less significant pathway is the Golgi complex.  相似文献   

16.
Summary This study was undertaken to determine whether the numerous cytoplasmic tubules (CT) in the apical cytoplasm of goldfish hindgut absorptive cells are directly involved in the endocytotic transport of macromolecules into the cells, or whether they are derived from the intracellular membrane components. The absorptive cells were exposed to horseradish peroxidase (HRP)-containing medium in organ culture and subsequently fixed and prepared for electron microscopy. Analysis revealed that 5 sec after exposure, many vesicular structures, including coated vesicles, were labelled with reaction product whereas almost all CT were negative. After a 1-min exposure, reaction product was detected in about 11 % of the CT, and thereafter, the percentage increased to about 95% after 15 min exposure. As labelled CT increased in number, the number of densely labelled vacuoles with attached CT also increased. CT connected to vacuoles with a peripheral margin of dense reaction product were always HRP-positive, whereas those connected to vacuoles which were not distinctly labelled were themselves also devoid of HRP reaction product. This indicated that the labelling of CT was closely associated with the labelling of the inner surface of the vacuolar membrane. These results indicate that CT are probably formed by a budding off from these vacuoles, rather than being directly involved in endocytosis.  相似文献   

17.
Summary In human duodenal mucosa Paneth cells originate away from the base of crypts and migrate towards the base during maturation The earliest cells in the Paneth cell lineage could be identified by labelling of lysozyme in the Golgi apparatus. Specific labelling for lysozyme was present in the rough endoplasmic reticulum, Golgi apparatus, condensing vacuoles, granules and many lysosomes of mature Paneth cells. The maturation of the Paneth cell is accompanied by an increase in the content of lysozyme in the secretory granules and with senescence lysozyme diffuses into the cytoplasm.  相似文献   

18.
Because extended exposure of AtT-20 corticotropin-secreting cells to atrial natriuretic factor (ANF) results in a desensitization of ANF-induced cGMP synthesis, we sought to establish whether pretreatment of AtT-20 cells with the atrial peptide also led to an internalization process. In fact, by coupling an ultrastructural approach to cryoultramicrotomy, ANF-immunoreactivity was detected at both the plasma membrane level and at intracellular sites in AtT-20 cells. Internalization was observed within 5 min at which time labelling was observed in the plasma membrane level, in vacuole-like structures in close proximity to the plasma membrane, in cytoplasmic matrix and sometimes in mitochondria. After 30 min exposure Golgi apparatus, mitochondria and nuclear euchromatin were also labelled. Following 1-4 hr, labelling in other cell compartments, e.g. lysosomal, was increased, while it was reduced in plasma membranes and vacuole-like structures. Secretory granules and endoplasmic reticulum were not labelled throughout the time course. Extraction of a intracellular [125I] ANF from AtT-20 cells following 4 hr incubation suggested that about 90% of the peptide was intact. The data suggest that internalization of ANF may serve to terminate the biological response associated with ANF receptor activation; subcellular distribution of internalized, intact ANF suggests that the peptide may have other, as yet unidentified, intracellular actions.  相似文献   

19.
Summary Caerulein-induced acute pancreatitis is characterized by the occurrence of two membrane-bound vacuolar systems in acinar cells. Beside digestive enzymes containing secretory vacuoles, lysosomal autophagic structures can be identified at the ultrastructural level. In the present study glycoconjugate patterns of the surrounding membranes were characterized by ultrastructural lectin-binding experiments using five colloidal-gold labeled lectins with distinct sugar specificities. Furthermore, the profile of membrane glycoproteins of isolated vacuolar fractions was studied by SDS-PAGE and lectin-blotting. In pancreatitis, membranes of secretory vacuoles showed a significant lower degree of lectin-binding compared to normal zymogen granules. In contrast, newly appearing autophagic vacuoles in pancreatitis revealed a strong membrane labelling for most lectins used. The pattern of membrane glycoproteins of secretory and autophagic vacuoles as determined by SDS-PAGE and lectin-blotting differed from those of normal zymogen granules resembling the protein profile of smooth microsomes. Since this pattern requires a previous passage through Golgi stacks, it is assumed that the two types of vacuoles derive from Golgi elements. For the pathogenesis of caerulein pancreatitis these vacuolar post-Golgi structures seem to play an important role.  相似文献   

20.
Cells dissociated from rat anterior pituitaries were incubated with native or cationized ferritin (CF) to trace the fate of surface membrane. Native ferritin, which did not bind to the cell surface, was taken up in small amounts by bulk-phase endocytosis and was found increasingly (over 1-2 h) concentrated in lysosomes. CF at 100-fold less concentrations bound rapidly to the cell membrane, was taken up by endocytosis in far greater amounts, and within 15-60 min was found increasingly within multiple stacked Golgi cisternae, around forming secretion granules, and within elements of GERL, as well as within lysosomes. The findings demonstrate that the fate of the tracer--and presumably also that of the surface membrane--varies with the same molecule differing only in net charge: vesicles carrying anionic ferritin (net negative charge) fuse only with elements of the lysosomal system whereas those carrying CF (net positive charge) can fuse not only with elements of the lysosomal system, but also with elements along the secretory pathway (Golgi cisternae and condensing granules) as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号