首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
It is well known that disinfection methods that successfully kill suspended bacterial populations often fail to eliminate bacterial biofilms. Recent efforts to understand biofilm survival have focused on the existence of small, but very tolerant, subsets of the bacterial population termed persisters. In this investigation, we analyze a mathematical model of disinfection that consists of a susceptible-persister population system embedded within a growing domain. This system is coupled to a reaction-diffusion system governing the antibiotic and nutrient. We analyze the effect of periodic and continuous dosing protocols on persisters in a one-dimensional biofilm model, using both analytic and numerical method. We provide sufficient conditions for the existence of steady-state solutions and show that these solutions may not be unique. Our results also indicate that the dosing ratio (the ratio of dosing time to period) plays an important role. For long periods, large dosing ratios are more effective than similar ratios for short periods. We also compare periodic to continuous dosing and find that the results also depend on the method of distributing the antibiotic within the dosing cycle.  相似文献   

2.
Modeling biocide action against biofilms   总被引:1,自引:0,他引:1  
A phenomenological model of biocide action against microbial biofilms was derived. Processes incorporated in the model include bulk flow in and out of a well-mixed reactor, transport of dissolved species into the biofilm, substrate consumption by bacterial metabolism, bacterial growth, advection of cell mass within the biofilm, cell detachment from the biofilm, cell death, and biocide concentration-dependent disinfection. Simulations were performed to analyze the general behavior of the model and to perform preliminary sensitivity analysis to identify key input parameters. The model captured several general features of antimicrobial agent action against biofilms that have been observed widely by experimenters and practitioners. These included (1) rapid disinfection followed by biofilm regrowth, (2) slower detachment than disinfection, and (3) reduced susceptibility of microorganisms in biofilms. The results support the plausibility of a mechanism of biofilm resistance in which the biocide is neutralized by reaction with biofilm constituents, leading to a reduction in the bulk biocide concentration and, more significantly, biocide concentration gradients within the biofilm. Sensitivity experiments and analyses identified which input parameters influence key response variables. Each of three response variables was sensitive to each of the five input parameters, but they were most sensitive to the initial biofilm thickness and next most sensitive to the biocide disinfection rate coefficient. Statistical regression modeling produced simple equations for approximating the response variables for situations within the range of conditions covered by the sensitivity experiment. The model should be useful as a tool for studying alternative biocide control strategies. For example, the simulations suggested that a good interval between pulses of biocide is the time to minimum thickness. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
We consider the mathematical model of dynamic antimicrobial action against bacterial biofilms. A mixture model is used in which the biofilm consisting of live and dead bacteria is modeled as one fluid component, while the solvent containing biocide is modeled as the other, and each component is represented by its volume fraction. The whole system is assumed to be an incompressible fluid and the velocity is governed by the Navier-Stokes equation. Biocide kills the live bacteria and its transport is governed by an advection-reaction-diffusion equation. Certain biocide also weakens the mechanical cohesiveness of the biofilm and results in biofilm removal under the shear stress of the external flow. Spatial and temporal patterns of antimicrobial action of three different biocides are considered and numerical simulation results by finite difference method are presented.  相似文献   

4.
This protocol allows for a direct comparison between planktonic and biofilm resistance for a bacterial strain that can form a biofilm in vitro. Bacteria are inoculated into the wells of a 96-well microtiter plate. In the case of the planktonic assay, serial dilutions of the antimicrobial agent of choice are added to the bacterial suspensions. In the biofilm assay, once inoculated, the bacteria are left to form a biofilm over a set period of time. Unattached cells are removed from the wells, the media is replenished and serial dilutions of the antimicrobial agent of choice are added. After exposure to the antimicrobial agent, the planktonic cells are assayed for growth. For the biofilm assay, the media is refreshed with fresh media lacking the antimicrobial agent and the biofilm cells are left to recover. Biofilm cell viability is assayed after the recovery period. The MBC-P for the antimicrobial agent is defined as the lowest concentration of drug that kills the cells in the planktonic culture.  In contrast, the MBC-B for a strain is determined by exposing preformed biofilms to increasing concentrations of antimicrobial agent for 24 hr. The MBC-B is defined as the lowest concentration of antimicrobial agent that kills the cells in the biofilm.  相似文献   

5.
AIMS: The purpose of this study was to compare the efficacy, in terms of bacterial biofilm penetration and killing, of alkaline hypochlorite (pH 11) and chlorosulfamate (pH 5.5) formulations. METHODS AND RESULTS: Two species biofilms of Pseudomonas aeruginosa and Klebsiella pneumoniae were grown by flowing a dilute medium over inclined stainless steel slides for 6 d. Microelectrode technology was used to measure concentration profiles of active chlorine species within the biofilms in response to treatment at a concentration of 1000 mg total chlorine l(-1). Chlorosulfamate formulations penetrated biofilms faster than did hypochlorite. The mean penetration time into approximately 1 mm-thick biofilms for chlorosulfamate (6 min) was only one-eighth as long as for the same concentration of hypochlorite (48 min). Chloride ion penetrated biofilms rapidly (5 min) with an effective diffusion coefficient in the biofilm that was close to the value for chloride in water. Biofilm bacteria were highly resistant to killing by both antimicrobial agents. Biofilms challenged with 1000 mg l(-1) alkaline hypochlorite or chlorosulfamate for 1 h experienced 0.85 and 1.3 log reductions in viable cell numbers, respectively. Similar treatment reduced viable numbers of planktonic bacteria to non-detectable levels (log reduction greater than 6) within 60 s. Aged planktonic and resuspended laboratory biofilm bacteria were just as susceptible to hypochlorite as fresh planktonic cells. CONCLUSION: Chlorosulfamate transport into biofilm was not retarded whereas hypochlorite transport clearly was retarded. Superior penetration by chlorosulfamate was hypothesized to be due to its lower capacity for reaction with constituents of the biofilm. Poor biofilm killing despite direct measurement of effective physical penetration of the antimicrobial agent into the biofilm demonstrates that bacteria in the biofilm are protected by some mechanism other than simple physical shielding by the biofilm matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This study lends support to the theory that the penetration of antimicrobial agents into microbial biofilms is controlled by the reactivity of the antimicrobial agent with biofilm components. The finding that chlorine-based biocides can penetrate, but fail to kill, bacteria in biofilms should motivate the search for other mechanisms of protection from killing by antimicrobial agents in biofilms.  相似文献   

6.
Aims: The aim of this work was to investigate the possible effect of human cathelicidin antimicrobial peptide LL37 on biofilm formation of Staphylococcus epidermidis, a major causative agent of indwelling device‐related infections. Methods and Results: We performed initial attachment assay and biofilm formation solid surface assay in microtitre plates, as well as growth experiment in liquid medium using laboratory strain Staph. epidermidis ATCC35984. We found that already a low concentration of the peptide LL37 (1 mg l?1) significantly decreased both the attachment of bacteria to the surface and also the biofilm mass. No growth inhibition was observed even at 16 mg l?1 concentration of LL37, indicating a direct effect of the peptide on biofilm production. Conclusions: As biofilm protects bacteria during infections in humans and allows their survival in a hostile environment, inhibition of biofilm formation by LL37 may have a key role to prevent bacterial colonization on indwelling devices. Significance and Impact of the Study: Our findings suggest that this host defence factor can be a potential candidate in prevention and treatment strategies of Staph. epidermidis infections in humans.  相似文献   

7.
The force-deflection and removal characteristics of bacterial biofilm were measured by two different techniques before and after chemical, or enzymatic, treatment. The first technique involved time lapse imaging of a biofilm grown in a capillary flow cell and subjected to a brief shear stress challenge imparted through increased fluid flow. Biofilm removal was determined by calculating the reduction in biofilm area from quantitative analysis of transmission images. The second technique was based on micro-indentation using an atomic force microscope. In both cases, biofilms formed by Staphylococcus epidermidis were exposed to buffer (untreated control), urea, chlorhexidine, iron chloride, or DispersinB. In control experiments, the biofilm exhibited force-deflection responses that were similar before and after the same treatment. The biofilm structure was stable during the post-treatment shear challenge (1% loss). Biofilms treated with chlorhexidine became less deformable after treatment and no increase in biomass removal was seen during the post-treatment shear challenge (2% loss). In contrast, biofilms treated with urea or DispersinB became more deformable and exhibited significant biofilm loss during the post-treatment flow challenge (71% and 40%, respectively). During the treatment soak phase, biofilms exposed to urea swelled. Biofilms exposed to iron chloride showed little difference from the control other than slight contraction during the treatment soak. These observations suggest the following interpretations: (1) chemical or enzymatic treatments, including those that are not frankly antimicrobial, can alter the cohesion of bacterial biofilm; (2) biocidal treatments (e.g., chlorhexidine) do not necessarily weaken the biofilm; and (3) biofilm removal following treatment with agents that make the biofilm more deformable (e.g., urea, DispersinB) depend on interaction between the moving fluid and the biofilm structure. Measurements such as those reported here open the door to development of new technologies for controlling detrimental biofilms by targeting biofilm cohesion rather than killing microorganisms.  相似文献   

8.
This modeling study evaluates the influence of biofilm geometrical characteristics on substrate mass transfer and conversion rates. A spatially two-dimensional model was used to compute laminar fluid flow, substrate mass transport, and conversion in irregularly shaped biofilms. The flow velocity above the biofilm surface was varied over 3 orders of magnitude. Numerical results show that increased biofilm roughness does not necessarily lead to an enhancement of either conversion rates or external mass transfer. The average mass transfer coefficient and Sherwood numbers were found to decrease almost linearly with biofilm area enlargement in the flow regime tested. The influence of flow, biofilm geometry and biofilm activity on external mass transfer could be quantified by Sh-Re correlations. The effect of biofilm surface roughness was incorporated in this correlation via area enlargement. Conversion rates could be best correlated to biofilm compactness. The more compact the biofilm, the higher the global conversion rate of substrate. Although an increase of bulk fluid velocity showed a large effect on mass transfer coefficients, the global substrate conversion rate per carrier area was less affected. If only diffusion occurs in pores and channels, then rough biofilms behave as if they were compact but having less biomass activity. In spite of the fact that the real biofilm area is increased due to roughness, the effective mass transfer area is actually decreased because only biofilm peaks receive substrate. This can be explained by the fact that in the absence of normal convection in the biofilm valleys, the substrate gradients are still largely perpendicular to the carrier. Even in the cases where convective transport dominates the external mass transfer process, roughness could lead to decreased conversion rates. The results of this study clearly indicate that only evaluation of overall conversion rates or mass fluxes can describe the correct biofilm conversion, whereas interpretation of local concentration or flow measurements as such might easily lead to erroneous conclusions.  相似文献   

9.
Biofilms are well known for their extreme tolerance to antibiotics. Recent experimental evidence has indicated the existence of a small fraction of specialized persister cells may be responsible for this tolerance. Although persister cells seem to exist in planktonic bacterial populations, within a biofilm the additional protection offered by the polymeric matrix allows persister cells to evade elimination and serve as a source for re-population. Whether persister cells develop through interactions with toxin/antitoxin modules or are senescent bacteria is an open question. In this investigation we contrast results of the analysis of a mathematical model of the toxin/antitoxin hypothesis for bacteria in a chemostat with results incorporating the senescence hypothesis. We find that the persister fraction of the population as a function of washout rate provides a viable distinction between the two hypotheses. We also give simulation results that indicate that a strategy of alternating dose/withdrawal disinfection can be effective in clearing the entire persister and susceptible populations of bacteria. This strategy was considered previously in analysis of a generic model of persister formation. We find that extending the model of persister formation to include the toxin/antitoxin interactions in a chemostat does not alter the qualitative results that success of the dosing strategy depends on the withdrawal time. While this treatment is restricted to planktonic bacterial populations, it serves as a framework for including persister cells in a spatially dependent biofilm model.  相似文献   

10.
The activity of daptomycin compared to vancomycin against Staphylococcus epidermidis-biofilms on intravascular catheters has been evaluated using the new Sevilla device that enables to use medical grade-catheters, in an in vitro model that simulates the in vivo conditions. S. epidermidis-biofilms were obtained on polyurethane catheter segments using the Sevilla device linked to a continuous culture system for 24 h. To assess the antimicrobial activity, at this time the continuous culture system was changed to therapeutic antimicrobial concentration solutions for 48 h. At each 24 h interval time, catheter segments were taken out, washed and sonicated. Viable adherent bacteria were determined by agar plating. Data of surviving bacteria numbers attached to the catheter surface obtained with the Sevilla device showed a very good reproducibility. Daptomycin showed a good activity against S. epidermidis-biofilm on polyurethane catheter surface. After 48 h exposure to daptomycin, surviving adherent bacteria were reduced by 4 log compared to the control with no antimicrobial. Using the same model, vancomycin reduced bacterial survival by only 1.3 log. The Sevilla device enables antimicrobial agent activity against bacterial biofilms grown on the external surface of catheters used in clinical practice to be evaluated. The model used replicates as closely as possible the biofilm formed in a highly standardized way. Using this model, daptomycin demonstrates potent in vitro activity against S. epidermidis-biofilm on a polyurethane catheter; this activity was greater than that showed by vancomycin.  相似文献   

11.
Summary A parallel plate flow cell reactor is introduced and used to evaluate cell adhesion and biofilm formation kinetics for four different bacterial strains of the species,E. coli. The reactor allows biofilm growth under defined, well-controlled fluid dynamics while providing continuous observations and direct sampling of biofilm for biological, chemical and physical analyses as well as immunofluorescent labeling.  相似文献   

12.
The activity of daptomycin compared to vancomycin against Staphylococcus epidermidis-biofilms on intravascular catheters has been evaluated using the new Sevilla device that enables to use medical grade-catheters, in an in vitro model that simulates the in vivo conditions. S. epidermidis-biofilms were obtained on polyurethane catheter segments using the Sevilla device linked to a continuous culture system for 24 h. To assess the antimicrobial activity, at this time the continuous culture system was changed to therapeutic antimicrobial concentration solutions for 48 h. At each 24 h interval time, catheter segments were taken out, washed and sonicated. Viable adherent bacteria were determined by agar plating. Data of surviving bacteria numbers attached to the catheter surface obtained with the Sevilla device showed a very good reproducibility. Daptomycin showed a good activity against S. epidermidis-biofilm on polyurethane catheter surface. After 48 h exposure to daptomycin, surviving adherent bacteria were reduced by 4 log compared to the control with no antimicrobial. Using the same model, vancomycin reduced bacterial survival by only 1.3 log. The Sevilla device enables antimicrobial agent activity against bacterial biofilms grown on the external surface of catheters used in clinical practice to be evaluated. The model used replicates as closely as possible the biofilm formed in a highly standardized way. Using this model, daptomycin demonstrates potent in vitro activity against S. epidermidis-biofilm on a polyurethane catheter; this activity was greater than that showed by vancomycin.  相似文献   

13.
Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device’s internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ~4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.  相似文献   

14.
An experiment was conducted in a saturated sand column with three bacterial strains that have different growth characteristics on toluene, Pseudomonas putida F1 which degrades toluene only under aerobic conditions, Thauera aromatica T1 which degrades toluene only under denitrifying conditions, and Ralstonia pickettii PKO1 has a facultative nature and can perform nitrate-enhanced biodegradation of toluene under hypoxic conditions (DO <2 mg/L). Steady-state concentration profiles showed that oxygen and nitrate appeared to be utilized simultaneously, regardless of the dissolved oxygen concentration and the results from fluorescent in-situ hybridization (FISH) indicated that PKO1 maintained stable cells numbers throughout the column, even when the pore water oxygen concentration was high. Since PKO1's growth rate under aerobic condition is much lower than that of F1, except under hypoxic conditions, these observations were not anticipated. Therefore these observations require a mechanistic explanation that can account for localized low oxygen concentrations under aerobic conditions. To simulate the observed dynamics, a multispecies biofilm model was implemented. This model formulation assumes the formation of a thin biofilm that is composed of the three bacterial strains. The individual strains grow in response to the substrate and electron acceptor flux from bulk fluid into the biofilm. The model was implemented such that internal changes in bacterial composition and substrate concentration can be simulated over time and space. The model simulations from oxic to denitrifying conditions compared well to the experimental profiles of the chemical species and the bacterial strains, indicating the importance of accounting for the biological activity of individual strains in biofilms that span different redox conditions.  相似文献   

15.
Changes in the viscoelastic material properties of bacterial biofilms resulting from chemical and antimicrobial treatments were measured by rheometry. Colony biofilms of Staphylococcus epidermidis or a mucoid Pseudomonas aeruginosa were subjected to a classical creep test performed using a parallel plate rheometer. Data were fit to the 4-parameter Burger model to quantify the material properties. Biofilms were exposed to the chloride salts of several common mono-, di-, and tri- valent cations, and to urea, industrial biocides, and antibiotics. Many of these treatments resulted in statistically significant alterations in the material properties of the biofilm. Multivalent cations stiffened the P. aeruginosa biofilm, while ciprofloxacin and glutaraldehyde weakened it. Urea, rifampin, and a quaternary ammonium biocide weakened the S. epidermidis biofilm. In general, there was no correspondence between the responses of the two different types of biofilms to a particular treatment. These results underscore the distinction between the killing power of an antimicrobial agent and its ability to alter biofilm mechanical properties and thereby influence biofilm removal. Understanding biofilm rheology and how it is affected by chemical treatment could lead to improvements in biofilm control.  相似文献   

16.
Adaptive responses to antimicrobial agents in biofilms   总被引:3,自引:0,他引:3  
Bacterial biofilms demonstrate adaptive resistance in response to antimicrobial stress more effectively than corresponding planktonic populations. We propose here that, in biofilms, reaction-diffusion limited penetration may result in only low levels of antimicrobial exposure to deeper regions of the biofilm. Sheltered cells are then able to enter an adapted resistant state if the local time scale for adaptation is faster than that for disinfection. This mechanism is not available to a planktonic population. A mathematical model is presented to illustrate. Results indicate that, for a sufficiently thick biofilm, cells in the biofilm implement adaptive responses more effectively than do freely suspended cells. Effective disinfection requires applied biocide concentration that increases quadratically or exponentially with biofilm thickness.  相似文献   

17.
Rahman M  Kim S  Kim SM  Seol SY  Kim J 《Biofouling》2011,27(10):1087-1093
Lytic bacteriophages (phages) have been investigated as treatments for bacterial infectious diseases. An induced phage, SAP-26, was isolated from a clinical isolate of Staphylococcus aureus. It belongs to the family Siphoviridae and its genome consists of double-stranded 41,207 bp DNA coding for 63 open reading frames. The phage SAP-26 showed a wide spectrum of lytic activity against both methicillin-resistant S. aureus and methicillin-susceptible S.aureus. Furthermore, combined treatment with a phage and antimicrobial agents showed a strong biofilm removal effect which induced structural changes in the biofilm matrix and a substantial decrease in the number of bacteria. Such a broad host range in S. aureus and biofilm removal activity of the phage SAP-26 suggests the possibility of its use as a therapeutic phage in combination with appropriate antimicrobial agent(s). Among the three antimicrobial agents combined with phage, the combination of rifampicin showed the best biofilm removal effect. To the authors' knowledge, this study showed for the first time that S. aureus biofilm could be efficiently eradicated with the mixture of phage and an antimicrobial agent, especially rifampicin.  相似文献   

18.
Pseudomonas aeruginosa entrapped in alginate gel beads to form artificial biofilms resisted killing by chlorine, glutaraldehyde, 2,2-dibromo-3-nitrilopropionamide (DBNPA), and an alkyl dimethyl benzyl ammonium compound (ADBAC). The degree of resistance was quantified by a resistance factor that compared killing times for biofilm and planktonic cells in response to the same concentration of antimicrobial agent. Resistance factors averaged 120 for chlorine, 34 for glutaraldehyde, 29 for DBNPA, and 1900 for ADBAC. In every case, resistance factors decreased with increasing concentration of the antimicrobial agent. An independent analysis of the concentration dependence of the apparent rates of killing of planktonic and biofilm bacteria showed that elevating the treatment concentration increased bacterial killing more in the biofilm than it did in a suspension culture. Calculation of a transport modulus comparing the rates of biocide reaction and diffusion suggested that at least part of the biofilm resistance to chlorine, glutaraldehdye, and DBNPA could be attributed to incomplete or slow penetration of these agents into the biofilm. Time-kill curves were nonlinear for biofilm bacteria in some cases. The shapes of these curves implicated retarded antimicrobial penetration for chlorine and glutaraldehyde and the presence of a tolerant subpopulation for DBNPA and ADBAC. The results indicate that treating biofilms with a concentrated dose of biocide is more effective than using prolonged doses of a lower concentration. Journal of Industrial Microbiology & Biotechnology (2002) 29, 10–15 doi:10.1038/sj.jim.7000256 Received 29 October 2001/ Accepted in revised form 18 March 2002  相似文献   

19.
20.
Lytic bacteriophages (phages) have been investigated as treatments for bacterial infectious diseases. An induced phage, SAP-26, was isolated from a clinical isolate of Staphylococcus aureus. It belongs to the family Siphoviridae and its genome consists of double-stranded 41,207 bp DNA coding for 63 open reading frames. The phage SAP-26 showed a wide spectrum of lytic activity against both methicillin-resistant S. aureus and methicillin-susceptible S.aureus. Furthermore, combined treatment with a phage and antimicrobial agents showed a strong biofilm removal effect which induced structural changes in the biofilm matrix and a substantial decrease in the number of bacteria. Such a broad host range in S. aureus and biofilm removal activity of the phage SAP-26 suggests the possibility of its use as a therapeutic phage in combination with appropriate antimicrobial agent(s). Among the three antimicrobial agents combined with phage, the combination of rifampicin showed the best biofilm removal effect. To the authors' knowledge, this study showed for the first time that S. aureus biofilm could be efficiently eradicated with the mixture of phage and an antimicrobial agent, especially rifampicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号