首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Activities of some key enzymes of carbon metabolism sucrose synthase, acid and alkaline invertase, phosphoenol pyruvate carboxylase, malic enzyme and isocitrate dehydrogenase were investigated in relation to the carbohydrate status in lentil pods. Sucrose remained the dominant soluble sugar in the pod wall and seed, with hexoses (glucose and fructose) present at significantly lower levels. Sucrose synthase is the predominant sucrolytic enzyme in the developing seeds of lentil (Lens culinaris L.). Acid invertase was associated with pod elongation and showed little activity in seeds. Sucrose breakdown was dominated by alkaline invertase during the development of podwall, while both the sucrose synthase and alkaline invertase were active in the branch of inflorescence. A substantial increase of sucrolytic enzymes was observed at the time of maximum seed filling stage (10–20 DAF) in lentil seed. The pattern of activity of sucrose synthase highly paralleled the phase of rapid seed filling and therefore, can be correlated with seed sink strength. It seems likely that the fruiting structures of lentil utilize phosphoenol pyruvate carboxylase for recapturing respired carbon dioxide. Higher activities of isocitrate dehydrogenase and malic enzyme in the seed at the time of rapid seed filling could be effectively linked to the deposition of protein reserves.  相似文献   

2.
The activities of sucrolytic enzymes viz. sucrose synthase and invertases were compared in developing pods of two genotypes of lentil differing in seed weight. Biomass accumulation of both the podwall and seed of ‘large’ genotype was higher during development as compared to the ‘small’ genotype. High activity of acid invertase together with prolonged activity of alkaline invertase in podwall of ‘large’ genotype may lead to longer cell division phase resulting in its larger size and biomass. Greater biomass of podwall could be responsible for providing more reserves for the developing seed hence determining its size. Higher alkaline invertase activity in ‘large’ seed from 15–20 DAF can be correlated to the sustained sucrolytic conditions for producing more cells required for its larger size. Increased levels of sucrose synthase in ‘large’ seed especially during maturation phase suggest the role of this enzyme in enhancing the seed sink strength.  相似文献   

3.
Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.  相似文献   

4.
Activities of the sucrose-cleaving enzymes, acid and neutral invertase and sucrose synthase, were measured in pods and seeds of developing snap bean (Phaseolus vulgaris L.) fruits, and compared with 14C-import, elongation and dry weight accumulation. During the first 10 d post-anthesis, pods elongated rapidly with pod dry weight increase lagging behind by several days. The temporal patterns of acid invertase activity and import coincided closely during the first part of pod development, consonant with a central role for this enzyme in converting imported sucrose during pod elongation and early dry weight accumulation. Later, sucrose synthase became the predominant enzyme of dry weight accumulation and was possibly associated with the development of phloem in pod walls. Sucrose synthase activity in seeds showed two peaks, corresponding to two phases of rapid import and dry weight accumulation; hence, sucrose synthase was associated with seed sink growth. Acid invertase activities in seeds were low and did not show a noticeable relationship with import or growth. All neutral invertase activities, during pod and seed development, were too low for it to have a dominant role in sucrose cleavage. Changes in activities of certain sucrose-cleaving enzymes appear to be correlated with certain sink functions, including import, storage of reserves, and biosynthetic activities. The data supports the association of specific sucrose-cleaving enzymes with the specific processes that occur in the developing pods and seeds of snap bean fruits; for example, acid invertase with pod elongation and sucrose synthase with fruit dry matter accumulation.  相似文献   

5.
Water-deficit effects on carbon and nitrogen metabolism of pea nodules   总被引:7,自引:0,他引:7  
Two experiments were carried out to investigate the effects of water-deficit stress on carbon and nitrogen metabolism of Pisum sativum nodules. In the first experiment, leaf w was allowed to reach -1.0 MPa over a period of 14 d whilst in the second experiment -1.5 MPa was reached during the same time period. Nodule activities of phosphoenol pyruvate carboxylase, glutamine synthetase, alkaline invertase, pyruvate decarboxylase, alcohol dehdyrogenase, uridine pyro-phosphorylase, and malate dehydrogenase activities were not affected by water-deficit stress. In the first experiment (-1.0 MPa), sucrose synthase (SS), an enzyme which hydrolyses sucrose to support nodule metabolism, declined by 50% in activity and about 25% in content, according to Western immunoblot data. In the second experiment (-1.5 MPa), SS activity decreased by 75% together with glutamate synthase and aspartate aminotransferase which declined by 60% and 40%, respectively. Coincident with the decline of these activities, a dramatic increase in the nodule content of sucrose and a slight increase in the levels of total free amino acids were found. It has been recently suggested that the decline in SS activity and, therefore, a reduced potential to metabolize sucrose may be an important factor contributing to the overall response of soybean nodules to water stress. These results suggest that this observation may be also correct for temperate legumes with indeterminate nodules. However, in this latter case, the activity of some enzymes involved in nitrogen assimilation (glutamate synthase and aspartate aminotransferase) were also affected by water-deficit stress).Key words: Pisum sativum, water stress, nitrogen metabolism, nodule metabolism, pea, sucrose synthase.   相似文献   

6.
The activities of enzymes of pentose phosphate pathway (PPP) viz. glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carbon metabolism viz. phosphoenol pyruvate carboxylase, NADP- isocitrate dehydrogenase and NADP-malic enzyme were measured in the plant and bacteroid fractions of mungbean (ureide exporter) and lentil (amide exporter) nodules along with the developing roots for comparison. The enzymes of pentose phosphate pathway in legume cytosol had higher activities at a stage of maximum nitrogenase activity and higher sucrose metabolism. However, bacteroids had only limited capacity for this pathway. The specific activities of these enzymes were greater in ureide than in amide exporter. CO2 fixation via higher activity of phosphoenolpyruvate carboxylase in the plant part of the nodules in lentil might have been due to the greater synthesis of four carbon amino acids for amide export. The peak of NADP-isocitrate dehydrogenase in both legumes coincided with the pentose phosphate pathway enzymes at the time of high rates of sucrose metabolism and nitrogen fixation. Higher activities of NADP-malic enzyme were obtained in mungbean than in the lentil nodules. These findings are consistent with the role of these enzymes in providing reductant (NADPH) and substrates for energy yielding metabolism of bacteroids and carbon skeletons for ammonia assimilation.  相似文献   

7.
The specific activities of the enzymes of the tricarboxylic acid cycle; citrate synthase, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were determined in early fifth-stage, young and mature adult Obeliscoides cuniculi, the rabbit stomach worm. ∝-Ketoglutarate dehydrogenase activity could not be determined in any fraction. Fumarate reductase activity was found only in the mitochondrial fraction while all other enzymes, including an NADP-dependent malic enzyme were localized in the cytoplasm. Glutamate dehydrogenase, acid and alkaline phosphatase activities were also recorded. High levels of those enzymes acting in the “reversed” direction, i.e. MDH and fumarase relative to the enzymes of the “forward” direction, i.e. citrate synthase, aconitase and isocitrate dehydrogenase suggests that under anaerobic conditions a modified tricarboxylic acid cycle can operate. Some variations in specific activities were apparent as the worms matured but no qualitative differences were observed.  相似文献   

8.
Accumulation of 60–70 % of biomass in turnip root takes place between 49–56 days after sowing. To understand the phenomenon of rapid sink filling, the activities of sucrose metabolising enzymes and carbohydrate composition in leaf blades, petiole and root of turnip from 42–66 days of growth were determined. An increase (2–3 folds) in glucose and fructose contents of roots accompanied by an increase in activities of acid and alkaline invertases was observed during rapid biomass accumulating phase of roots. The observed decrease in the activities of acid and alkaline invertases along with sucrose synthase (cleavage) in petiole during this period could facilitate unrestricted transport of sucrose from leaves to the roots. During active root filling period, a decrease in sucrose synthase (cleavage) and alkaline invertase activities was also observed in leaf blades. A rapid decline in the starch content of leaf blades was observed during the phase of rapid sink filling. These metabolic changes in the turnip plant led to increase in hexose content (35–37 %) of total dry biomass of roots at maturity. High hexose content of the roots appears to be due to high acid invertase activity of the root.  相似文献   

9.
Abstract

In the present work, the response to NaCl applied at the vegetative stage to Medicago truncatula and Lotus japonicus has been evaluated in order to ascertain whether the effect of salt stress on nitrogen fixation is due to a limitation on nodular carbon metabolism. Results show maximum sucrose synthase (SS) and alkaline invertase (AI) activities were obtained at the vegetative stage, when maximum nitrogenase activity was detected in both species. SS activity decreased with the salt treatment, providing evidence of the regulatory role of this enzyme for the carbon supply to the bacteroids. Phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activities could account for higher nitrogen fixation efficiency detected in L. japonicus nodules and isocitrate dehydrogenase (ICDH) activity compensated for the carbon limitations that occur under salt stress. These results support that nitrogenase inhibition in nodules experiencing salt stress is doubt to a carbon flux shortage, as result of carbon metabolism enzymes activities down-regulation.  相似文献   

10.
The localization of phosphoenol pyruvate carboxylase (EC 4.1.1.3.1.) in the leaf cells of Sorghum vulgare was investigated by using three techniques: the conventional aqueous and non aqueous methods gave conflicting results; the immunocytochemical techniques clearly showed that the enzyme is predominantly located in the cytoplasm of mesophyll cells.Abbreviations PEP phosphoenol pyruvate - PAG polyacrylamide gel - NADP MDH NADP malate dehydrogenase - FITC fluorescein isothiocyanate - SAB serum albumine bovine - DTT dithiothreitol - MDH malate dehydrogenase - ME malic enzyme - PBS phosphate buffer saline - PAP peroxidase anti-peroxidase  相似文献   

11.
The autotroph Methanococcus maripaludis contained high levels of acetate-coenzyme A ligase, pyruvate synthase, pyruvate, water dikinase, pyruvate carboxylase, and the enzymes of the incomplete reductive tricarboxylic acid cycle. Phosphoenolpyruvate carboxykinase, citrate synthase, and isocitrate dehydrogenase were not detected. In contrast, the heterotroph Methanococcus sp. strain A3 contained acetate kinase, and acetate coenzyme A ligase was virtually absent.  相似文献   

12.
Summary Enzyme activities of the tricarboxylic acid (TCA) cycle and the anaplerotic pathways, as well as the cell cytology of two C. lipolytica mutants with the modified glyoxylate cycle and their parent strain were studied during the exponential growth phase on glucose or hexadecane.Among the TCA cycle enzymes, the key enzyme citrate synthase had the highest activity in all three strains grown on both substrates. NAD-dependent isocitrate dehydrogenase had the minimum activity. All strains had well-developed mitochondria.Pyruvate carboxylation was active in the wild strain and mutant 2 grown on glucose, where this reaction is the basic anaplerotic pathway for oxal-acetate synthesis; mutant 1 had actively functioning enzymes for both anaplerotic pathways — pyruvate carboxylase, isocitrate lyase and malate synthase.During hexadecane assimilation, the number of peroxisomes in all strains increased sharply, accompanied by a simultaneous increase in isocitrate lyase activity.The low activities of both isocitrate lyase and pyruvate carboxylase in mutant 2 give reason to believe that this strain has an additional pathway for oxalacetic acid synthesis during the assimilation of n-alkane.  相似文献   

13.
Sucrose metabolism in lima bean seeds   总被引:12,自引:7,他引:5       下载免费PDF全文
Xu DP  Sung SJ  Black CC 《Plant physiology》1989,89(4):1106-1116
Developing and germinating lima bean (Phaseolus lunatus var Cangreen) seeds were used for testing the sucrose synthase pathway, to examine the competition for uridine diphosphate (UDP) and pyrophosphate (PPi), and to identify adaptive and maintenance-type enzymes in glycolysis and gluconeogenesis. In developing seeds, sucrose breakdown was dominated by the sucrose synthase pathway; but in the seedling embryos, both the sucrose synthase pathway and acid invertase were active. UDPase activity was low and seemingly insufficient to compete for UDP during sucrose metabolism in seed development or germination. In contrast, both an acid and alkaline pyrophosphatase were active in seed development and germination. The set of adaptive enzymes identified in developing seeds were sucrose synthase, PPi-dependent phosphofructokinase, plus acid and alkaline pyrophosphatase; and, the adaptive enzymes identified in germinating seeds included the same set of enzymes plus acid invertase. The set of maintenance enzymes identified during development, in the dry seed, and during germination were UDP-glucopyrophosphorylase, neutral invertase, ATP and UTP-dependent fructokinase, glucokinase, phosphoglucomutase, ATP and UTP-dependent phosphofructokinase and sucrose-P synthase.  相似文献   

14.
The effects of iron deficiency and iron resupply on the metabolism of leaf organic acids have been investigated in hydroponically grown sugar beet. Organic acid concentrations and activities in leaf extracts of several enzymes related to organic acid metabolism were measured. Enzymes assayed included phosphoenol pyruvate carboxylase (PEPC; EC 4.1.1.31), different Krebs cycle enzymes: malate dehydrogenase (MDH; EC 1.1.1.37), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2), citrate synthase (CS; EC 4.1.3.7) and isocitrate dehydrogenase (ICDH; EC 1.1.1.42), glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and two enzymes related to anaerobic metabolism (lactate dehydrogenase [LDH]; EC 1.1.1.27, and pyruvate decarboxylase [PDC]; EC 4.1.1.1). Iron concentration in leaves was severely decreased by iron deficiency. Iron resupply caused an increase in iron concentrations, reaching levels similar to the controls in 96 h. Iron deficiency induced a 2.3-fold (from 16 to 37 mmol m−2) increase in leaf total organic acid concentration. Organic anion concentrations were still 4-fold higher than the controls 24 h after resupply and decreased to values similar to those found in the controls after 96 h. All measured enzymes had increased activities in extracts of iron-deficient leaves when compared to the controls and generally decreased to control values 24 h after iron addition. These data provide evidence that organic acid accumulation in iron-deficient leaves is likely not due to an enhancement in leaf carbon fixation. Instead, this accumulation could be associated with organic acid export from the roots to the leaves via xylem.  相似文献   

15.
In this study, we analyzed the toxic effect of Ni during the development of wheat shoots. Typical developmental alterations in carbon metabolism-related parameters reflecting changes associated with the transition of the seedlings from heterotrophic to autotrophic metabolism were observed in the control shoots between the 1st and the 4th days. Adverse effects of 50 and 100 μM Ni became evident starting from the 4th day of growth on the metal-containing media. We found that Ni-induced stimulation of phosphoenolpyruvate carboxylase (PEPC) activity coincided with decrease in the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) level and with declines in net photosynthetic rate (PN) and stomatal conductance (gs). Application of Ni resulted in increased activities of several dehydrogenases: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (NADP-ICDH) and malate dehydrogenase (NADH-MDH). In contrast, the activities of malic enzymes (NADP-ME and NAD-ME) decreased due to Ni stress. Treatment with Ni led to accumulation of glucose and declined concentration of sucrose as well as considerable increases in concentrations of malic and citric acids. Our results indicate that Ni stress redirects the carbon metabolism of developing wheat shoots to provide carbon skeletons for synthesis of amino acids and organic acids as well as to supply reducing power to sustain normal metabolic processes and to support defense mechanisms against oxidative stress.  相似文献   

16.
17.
The roles of the pyruvate decarboxylation pathway and TCA metabolic cycle in activation of anaerobic metabolism in ripening Hamlin oranges were investigated. Oranges were harvested weekly from October to February during the 1980–81 and 1981–82 growing season. Juice vesicles from each weekly sample were assayed for pyruvate decarboxylase, alcohol dehydrogenase, malic enzyme, phosphoenolpyruvate carboxylase, malate dehydrogenase, citrate synthase, isocitrate dehydrogenase and cytochrome oxidase. Also, juice was assayed for ethanol, acetaldehyde, pyruvate, oxalacetate, malate and citrate. In December when ethanol accumulated rapidly in the fruit, pyruvate decarboxylase and alcohol dehydrogenase increased markedly. During the same month, the pyruvate level declined, suggesting that the increases in enzyme levels activated the conversion of pyruvate to ethanol.  相似文献   

18.
The specific activities of testicular enzymes of the pyruvate/malate cycle involved in lipogenesis after thyroidectomy and thyroxine replacement were studied in prepubertal, pubertal and adult rats. Thyroidectomy induced testicular ATP citrate-lyase, malate dehydrogenase and malic enzyme activities and inhibited isocitrate dehydrogenase (NADP+) activity. Thyroxine treatment on thyroidectomized animals reverted all enzyme activities to normal. The result suggests that thyroid hormones have a differential effects on testicular enzymes of the pyruvate/malate cycle involved in lipogenesis.  相似文献   

19.
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH), a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC), malic enzyme (ME), malate dehydrogenase (MDH), malate synthase (MS), and isocitrate lyase (ICL) that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK) and the upregulation of pyruvate kinase (PK) ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.  相似文献   

20.
Activities of key enzymes of the Calvin cycle and C4 metabolism, rates of CO2 fixation, and the initial products of photosynthetic 14CO2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv `Toria.' Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14CO2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO2 during light. However, respiratory losses were very high during the dark period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号