首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expansion of CTG/CAG trinucleotide repeats has been shown to cause a number of autosomal dominant cerebellar ataxias (ADCA) such as SCA1, SCA2, SCA3/ MJD, SCA6, SCA7, SCA8 and DRPLA. There is a wide variation in the clinical phenotype and prevalence of these ataxias in different populations. An analysis of ataxias in 42 Indian families indicates that SCA2 is the most frequent amongst all the ADCAs we have studied. In the SCA2 families, together with an intergenerational increase in repeat size, a horizontal increase with the birth order of the offspring was also observed, indicating an important role for parental age in repeat instability. This was strengthened by the detection of a pair of dizygotic twins with expanded alleles showing the same repeat number. Haplotype analysis indicates the presence of a common founder chromosome for the expanded allele in the Indian population. Polymorphism of CAG repeats in 135 normal individuals at the SCA loci studied showed similarity to the Caucasian population but was significantly different from the Japanese population.  相似文献   

2.
The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 and MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% had SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively.  相似文献   

3.
The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats.  相似文献   

4.
To identify various subtypes of spinocerebellar ataxias (SCAs) among 57 unrelated individuals clinically diagnosed as ataxia patients we analysed the SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci for expansion of CAG repeats. We detected CAG repeat expansion in 6 patients (10.5%) at the SCA1 locus. Ten of the 57 patients (17.5%) had CAG repeat expansion at the SCA2 locus, while four had CAG expansion at the SCA3/MJD locus (7%). At the SCA6 locus there was a single patient (1.8%) with 21 CAG repeats. We have not detected any patient with expansion in the SCA7 and DRPLA loci. To test whether the frequencies of the large normal alleles in SCA1, SCA2 and SCA6 loci can reflect some light on prevalence of the subtypes of SCAs we studied the CAG repeat variation in these loci in nine ethnic sub-populations of eastern India from which the patients originated. We report here that the frequency of large normal alleles (>31 CAG repeats) in SCA1 locus to be 0.211 of 394 chromosomes studied. We also report that the frequency of large normal alleles (>22 CAG repeats) at the SCA2 locus is 0.038 while at the SCA6 locus frequency of large normal alleles (>13 repeats) is 0.032. We discussed our data in light of the distribution of normal alleles and prevalence of SCAs in the Japanese and white populations.  相似文献   

5.
谭建强  汪萍  胡启平  李松峰  舒伟  马军  方玲  华荣  丁晔  袁志刚 《遗传》2009,31(6):605-610
为探讨广西地区脊髓小脑性共济失调(Spinocerebellar ataxia, SCA)患者各种亚型类型特点及分布状况, 应用聚合酶链反应(Polymerase chain reaction, PCR)、毛细管电泳(Capillary electrophoresis, CE)片段分析等技术检测分析遗传性共济失调患者的SCA1、SCA2、SCA3/MJD、SCA6、SCA7和SCA12 (CAG)n突变。在6个SCA家系共检出21例患者和19例症状前患者均为SCA3/MJD突变, CAG重复数分别为59~70次和60~73次。未检测到SCA1、SCA2、SCA6、SCA7和SCA12(CAG)n突变。研究表明, 广西地区的SCA病人主要为SCA3/MJD型, 患者的CAG重复数低于过去的报道。  相似文献   

6.
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia that has been described primarily in families of Azorean or Portuguese descent. MJD and chromosome 6p-linked spinocerebellar ataxia (SCA1) are difficult to differentiate clinically, and it has been suggested that they may be allelic variants of the same disorder. We have tested MJD families for linkage to six DNA sequence polymorphisms located on chromosome 6p, including the highly informative dinucleotide repeat, D6S89. Seventeen centimorgans telomeric to and 41 cM centromeric to D6S89, a region that includes the SCA1 locus reported to be within 3 cM of D6S89, have been excluded. These data provide conclusive evidence that MJD and SCA1 are nonallelic.  相似文献   

7.
Pure autosomal dominant spastic paraplegia (SPG) is a genetically heterogeneous neurodegenerative disorder of the central nervous system clinically characterized by progressive spasticity mainly affecting the lower limbs. Three distinct loci have been mapped to chromosomes 14q (SPG3), 2p (SPG4) and 15q (SPG6). In particular, SPG4 families show striking intrafamilial variability suggestive of anticipation and evidence has been provided that CAG/CTG repeat expansions may be involved. To isolate CAG/CTG repeat containing sequences from within the SPG4 candidate region, a novel approach was developed. Fragmentation vectors were assembled allowing direct fragmentation of yeast artificial chromosomes (YACs) with a short (> or = 21 bp) CAG/CTG sequence as the target site for homologous recombination. We used the CAG/CTG YAC fragmentation vectors to isolate CAG/CTG containing sequences from four YACs spanning the SPG4 candidate region between D2S400 and D2S367. A total of four CAG/CTG containing sequences were isolated of which three were novel. However, none of the four CAG/CTG repeats showed expanded alleles in two Belgian SPG4 families. In addition, we showed that the CAG/CTG alleles detected by the repeat expansion detection (RED) method could be fully explained by two polymorphic nonpathogenic CAG/CTG repeats on chromosomes 17 and 18, respectively. Also, the RED expansions in six SPG families could not be explained by amplification of the CAG/CTG repeats at the SPG4 locus. Together, our data do not support the hypothesis of a CAG/CTG repeat expansion as the molecular mechanism underlying SPG4 pathology.  相似文献   

8.
Machado Joseph disease (MJD) is a progressive, spinocerebellar ataxia (SCA) with an autosomal dominant mode of inheritance and almost complete penetrance. Clinically, it is difficult to distinguish it from other autosomal dominantly inherited ataxias, and it has been suggested that MJD may be caused by an allelic variant of SCA. Exclusion of MJD from the SCA1 locus on chromosome 6p has previously been demonstrated. However, following the recent assignment of a second locus for spinocerebellar ataxia (SCA2) to chromosome 12q in a large Cuban kindred of Spanish origin, we have investigated linkage in MJD families using the two markers, D12S58 and PLA2, that flank this disease gene. The MJD locus was definitively excluded from an interval spanning approximately 70 cM, which includes these loci. These studies demonstrate that MJD and SCA2 are genetically distinct despite similarities in disease phenotype and ancestral origins of the patients. Thus, the as yet unmapped MJD locus represents a third SCA locus, providing further evidence for genetic heterogeneity within these disorders.  相似文献   

9.
The mutation responsible for Machado-Joseph disease (MJD) has been identified as an expansion of a CAG trinucleotide repeat in a novel gene on chromosome 14q32.1. The CAG repeat tract is followed by C or G, and alleles are thereby divided into two types on the basis of molecular configuration, (CAG)nC and (CAG)nG. We have studied the relationship between the repeat length and the configuration in 38 patients from 28 Japanese families with MJD, and 31 unrelated normal Japanese subjects. The CAG repeat length in 100 normal alleles ranged from 13 to 37 repeats, while 38 MJD patients had one expanded allele with 64 to 84 repeats. Surprisingly, the expanded alleles had exclusively the (CAG)nC configuration, while both (CAG)nC and (CAG)nG were seen in normal alleles from MJD and control subjects. Furthermore, in normal alleles, the CAG repeat tract was significantly longer in (CAG)nC than in (CAG)nG. These findings suggest that the (CAG)nC configuration is related to repeat instability of the MJD gene. Received: 23 April 1996 / Revised: 24 June 1996  相似文献   

10.
BACKGROUND: Several neurological disorders have recently been explained through the discovery of expanded DNA repeat sequences. Among these is Machado-Joseph disease, one of the most common spinocerebellar ataxias (MJD/SCA3), caused by a CAG repeat expansion on chromosome 14. A useful way of detecting repeat sequence mutations is offered by the repeat expansion detection method (RED), in which a thermostable ligase is used to detect repeat expansions directly from genomic DNA. We have used RED to detect CAG expansions in families with either MJD/SCA3 or with previously uncharacterized spinocerebellar ataxia (SCA). MATERIALS AND METHODS: Five MJD/SCA3 families and one SCA family where linkage to SCA1-5 had been excluded were analyzed by RED and polymerase chain reaction (PCR). RESULTS: An expansion represented by RED products of 180-270 bp segregated with MJD/SCA3 (p < 0.00001) in five families (n = 60) and PCR products corresponding to 66-80 repeat copies were observed in all affected individuals. We also detected a 210-bp RED product segregating with disease (p < 0.01) in a non-SCA1-5 family (n = 16), suggesting involvement of a CAG expansion in the pathophysiology. PCR analysis subsequently revealed an elongated MJD/SCA3 allele in all affected family members. CONCLUSIONS: RED products detected in Machado-Joseph disease families correlated with elongated PCR products at the MJD/SCA3 locus. We demonstrate the added usefulness of RED in detecting repeat expansions in disorders where linkage is complicated by phenotyping problems in gradually developing adult-onset disorders, as in the non-SCA1-5 family examined. The RED method is informative without any knowledge of flanking sequences. This is particularly useful when studying diseases where the mutated gene is unknown. We conclude that RED is a reliable method for analyzing expanded repeat sequences in the genome.  相似文献   

11.
Hereditary cerebellar ataxias, including spinocerebellar ataxia type I (SCA1), dentato-rubro-pallidoluysian atrophy (DRPLA), and Machado-Joseph disease (MJD), have been associated with unstable CAG repeats. The length of the CAG repeat is a major factor in determining the age of onset of these diseases. In electrophoresis through acrylamide gels with formamide, the CAG repeat length following the polymerase chain reaction (PCR) coincides with the sequence-determined repeat length after subcloning. However, without formamide, PCR products with long CAG repeats appear 1–4 repeats shorter than when electrophoresed with formamide, and the repeat lengths are variable. In addition, the larger the CAG repeats are, the more difficult are the PCR reactions. A mixture containing thermostable Taq and Pwo DNA polymerases (so-called “long PCR”) is much more sensitive than that with Taq polymerase alone in detecting expanded CAG repeats. Therefore, highly denaturing conditions, especially formamide gel electrophoresis, and the “long PCR” protocol should be used to evaluate the exact CAG repeat length. We have used these principles to detect unstable CAG repeats. The normal ranges are 14–34 repeats for MJD, 6–31 repeats for DRPLA, and 21–32 repeats for SCA1. Received: 29 August 1995 / Revised: 12 October 1995  相似文献   

12.
The autosomal dominant spinocerebellar ataxias (SCAs) are a group of late-onset, neurodegenerative disorders for which 10 loci have been mapped (SCA1, SCA2, SCA4-SCA8, SCA10, MJD, and DRPLA). The mutant proteins have shown an expanded polyglutamine tract in SCA1, SCA2, MJD/SCA3, SCA6, SCA7, and DRPLA; a glycine-to-arginine substitution was found in SCA6 as well. Recently, an untranslated (CTG)n expansion on chromosome 13q was described as being the cause of SCA8. We have now (1) assessed the repeat size in a group of patients with ataxia and a large number of controls, (2) examined the intergenerational transmission of the repeat, and (3) estimated the instability of repeat size in the sperm of one patient and two healthy controls. Normal SCA8 chromosomes showed an apparently trimodal distribution, with classes of small (15-21 CTGs), intermediate (22-37 CTGs), and large (40-91 CTGs) alleles; large alleles accounted for only0.7% of all normal-size alleles. No expanded alleles (>/=100 CTGs) were found in controls. Expansion of the CTG tract was found in five families with ataxia; expanded alleles (all paternally transmitted) were characterized mostly by repeat-size contraction. There was a high germinal instability of both expanded and normal alleles: in one patient, the expanded allele (152 CTGs) had mostly contraction in size (often into the normal range); in the sperm of two normal controls, contractions were also more frequent, but occasional expansions into the upper limit of the normal size range were also seen. In conclusion, our results show (1) no overlapping between control (15-91) and pathogenic (100-152) alleles and (2) a high instability in spermatogenesis (both for expanded and normal alleles), suggesting a high mutational rate at the SCA8 locus.  相似文献   

13.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by cerebellar ataxia and pyramidal signs associated in varying degrees with a dystonic-rigid extrapyramidal syndrome or peripheral amyotrophy. Unstable CAG trinucleotide repeat expansion in the MJD gene on the long arm of chromosome 14 has been identified as the pathological mutation for MJD. While investigating the distribution of CAG repeat lengths of the MJD gene in Taiwan’s population, we have identified 18 MJD-affected patients and 12 at-risk individuals in seven families. In addition, we have analyzed the range of CAG repeat lengths in 96 control individuals. The CAG repeat number ranged from 13 to 44 in the controls and 72–85 in the affected and at- risk individuals. Our results indicated that the CAG repeat number was inversely correlated with the age of onset. The differences in CAG repeat length between parent and child and between siblings are greater with paternal transmission than maternal transmission. Our data show a tendency towards the phenomenon of anticipation in the MJD families but do not support unidirectional expansion of CAG repeats during transmission. We also demonstrated that PCR amplification of the CAG repeats in the MJD gene from villous DNA was possible and might prove useful as a diagnostic tool for affected families in the future. Received: 4 December 1996 / Accepted: 5 March 1997  相似文献   

14.
Machado-Joseph disease (MJD) is associated with the expansion of a CAG trinucleotide repeat in a novel gene on 14q32.1. We confirmed the presence of this expansion in 156 MJD patients from 33 families of different geographic origins: 15 Portuguese Azorean, 2 Brazilian, and 16 North American of Portuguese Azorean descent. Normal chromosomes contain between 12 and 37 CAG repeats in the MJD gene, whereas MJD gene carriers have alleles within the expanded range of 62–84 CAG units. The distribution of expanded alleles and the gap between normal and expanded allele sizes is either inconsistent with a premutation hypothesis or most (if not all) of the alleles we studied descend from a common ancestor. There is a strong correlation between the expanded repeat size and the age at onset of the disease as well as the clinical presentation. There is mild instability of the CAG tract length with transmission of the expanded alleles; both increase and decrease in size between parents and progeny occur, with larger variations in male than in female transmissions. Together, these effects can partly explain the variability of age at onset and of phenotypic features in MJD; however, other modifying factors must exist.  相似文献   

15.
Genetic anticipation – increasing severity and a decrease in the age of onset with successive generations of a pedigree – is clearly present in autosomal dominant cerebellar ataxia (ADCA). Anticipation is correlated with expansion of the CAG/CTG repeat sequence to sizes above those in the normal range through the generations of a pedigree. Genetic heterogeneity has been demonstrated for ADCA, with four cloned genes (SCA1, SCA2, SCA3/MJD, and SCA6) and three mapped loci (SCA4, SCA5 and SCA7). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), presents anticipation with CAG/CTG repeat expansions. We had previously analysed ADCA patients who had not shown repeat expansions in cloned genes for CAG/CTG repeat expansions by the repeat expansion detection method (RED) and had detected expansions of between 48 and 88 units in 17 unrelated familial cases. We present here an analysis of 13 genes and expressed sequence tags (ESTs) containing 10 or more CAG/ CTG repeat sequences selected from public databases in the 17 unrelated ADCA patients. Of the 13 selected genes and ESTs, 9 were found to be polymorphic with heterozygosities ranging between 0.09 and 0.80 and 2 to 17 alleles. In ADCA patients none of the loci showed expansions above the normal range of the CAG/CTG repeat sequences, excluding them as the mutation causing ADCA. Received: 28 May 1997 / Accepted: 30 June 1997  相似文献   

16.
The autosomal dominant cerebellar ataxias (ADCA) type I are a group of neurological disorders that are clinically and genetically heterogeneous. Two genes implicated in the disease, SCA1 (spinal cerebellar ataxia 1) and SCA2, are already localized. We have mapped a third locus to chromosome 14q24.3-qter, by linkage analysis in a non-SCA1/non-SCA2 family and have confirmed its existence in a second such family. We suggest designating this new locus “SCA3.” Combined analysis of the two families restricted the SCA3 locus to a 15-cM interval between markers D14S67 and D14S81. The gene for Machado-Joseph disease (MJD), a clinically different form of ADCA type I, has been recently assigned to chromosome 14q24.3-q32. Although the SCA3 locus is within the MJD region, linkage analyses cannot yet demonstrate whether they result from mutations of the same gene. Linkage to all three loci (SCA1, SCA2, and SCA3) was excluded in another family, which indicates the existence of a fourth ADCA type I locus.  相似文献   

17.
Autosomal dominant cerebellar ataxia type III (ADCA III) is a relatively benign, late-onset, slowly progressive neurological disorder characterized by an uncomplicated cerebellar syndrome. Three loci have been identified: a moderately expanded CAG trinucleotide repeat in the SCA 6 gene, the SCA 5 locus on chromosome 11, and a third locus on chromosome 22 (SCA 10). We have identified two British families in which affected individuals do not have the SCA 6 expansion and in which the disease is not linked to SCA 5 or SCA 10. Both families exhibit the typical phenotype of ADCA III. Using a genomewide searching strategy in one of these families, we have linked the disease phenotype to marker D15S1039. Construction of haplotypes has defined a 7.6-cM interval between the flanking markers D15S146 and D15S1016, thereby assigning another ADCA III locus to the proximal long-arm of chromosome 15 (SCA 11). We excluded linkage of the disease phenotype to this region in the second family. These results indicate the presence of two additional ADCA III loci and more clearly define the genetic heterogeneity of ADCA III.  相似文献   

18.
脊髓小脑性共济失调3型(SCA3/MJD),是一种因致病基因MJD1编码区内CAG异常重复扩增所致的常染色体显性遗传迟发性神经退行性疾病. 已知PINK1蛋白可通过抗氧化稳定线粒体,阻止帕金森疾病的发生,但其在SCA3/MJD中的作用尚不清楚. 本文旨在探索过表达PINK1对SCA3/MJD转基因果蝇模型的保护作用.本研究利用Mhc-Gal4启动子表达致病蛋白质片段(MJDtr-Q78)获得SCA3/MJD果蝇模型,分别运用过表达PINK1和RNA干扰PINK1研究其在SCA3/MJD果蝇模型中的功能.结果显示,疾病模型组翅膀异常率增高,线粒体呈过度融合状态,ATP值降低;PINK1 RNA干扰组翅膀异常率明显增高,线粒体呈显著过度融合状态,ATP值明显降低;PINK1过表达组翅膀异常率明显降低,线粒体清晰、完整,ATP值明显升高.本文的结果提示, 过表达PINK1对SCA3/MJD转基因果蝇模型起保护作用,而RNA干扰PINK1表达加重SCA3/MJD转基因果蝇模型病情.PINK1在SCA3/MJD果蝇模型中的功能可能通过改善细胞内线粒体功能实现.  相似文献   

19.
CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called "dynamic mutation" diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.  相似文献   

20.
Autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders caused by unstable CAG repeat expansions encoding polyglutamine tracts. Five spinocerebellar ataxia genes (SCA1, SCA2, SCA3, SCA6 and SCA7) and another related dominant ataxia gene (DRPLA) have been cloned, allowing the genetic classification of these disorders. We present here the molecular analysis of 87 unrelated familial and 60 sporadic Spanish cases of spinocerebellar ataxia. For ADCA cases 15% were SCA2, 15% SCA3, 6% SCA1, 3% SCA7, 1% SCA6 and 1% DRPLA, an extremely rare mutation in Caucasoid populations. About 58% of ADCA cases remained genetically unclassified. All the SCA1 cases belong to the same geographical area and share a common haplotype for the SCA1 mutation. The expanded alleles ranged from 41 to 59 repeats for SCA1, 17 to 29 for SCA2, 67 to 77 for SCA3, and 38 to 113 for SCA7. One SCA6 case had 25 repeats and one DRPLA case had 63 repeats. The highest CAG repeat variation in meiotic transmission of expanded alleles was detected in SCA7, this being of +67 units in one paternal transmission and giving rise to a 113 CAG repeat allele in a patient who died at 3 years of age. Meiotic transmissions have also shown a tendency to more frequent paternal transmission of expanded alleles in SCA1 and maternal in SCA7. All SCA1 and SCA2 expanded alleles analyzed consisted of pure CAG repeats, whereas normal alleles were interrupted by 1–2 CAT trinucleotides in SCA1, except for three alleles of 6, 14 and 21 CAG repeats, and by 1–3 CAA trinucleotides in SCA2. No SCA or DRPLA mutations were detected in the 60 sporadic cases of spinocerebellar ataxia, but one late onset patient was identified as a recessive form due to GAA-repeat expansions in the Friedreich’s ataxia gene. Received: 6 January 1999 / Accepted: 18 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号