首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the oxygen effect and the radiosensitizing action of metronidazole and misonidazole on hypoxic cells of irradiated yeast haplonts. It was shown that metronidazole did not increase the radiosensitivity of all the strains under study while the sensitizing effectiveness of oxygen and misonidazole approximated the values characteristic of different repair-deficient rad-mutants. Possible causes of the radiosensitizing effects observed are discussed.  相似文献   

2.
A study was made of the influence of rad mutation, leading to radiosensitivity increase, on the effect of additional growth in diploid Saccharomyces cerevisiae yeast exposed to gamma-radiation. The most radiosensitive mutants of this series, rad52/rad52 and rad54/rad54, did not virtually vary from the wild type cells in the value of the additional growth effect. Some other mutants, for instance, rad53/rad53 and rad55/rad55, exhibited a significantly lesser effect of additional growth. It was shown that the effect of additional growth did not depend upon the rate of rapid and slow postirradiation recovery of the wild type cells. The results of the studies prompt the conclusion that the processes responsible for the additional growth effect and those responsible for recovery of cells from radiation damages are mutually independent.  相似文献   

3.
A moderate reduction in the non-protein thiol content of V79 379A Chinese hamster cells, obtained by pretreatment with buthionine sulphoximine (BSO), diethyl maleate (DEM) or N-ethyl maleimide (NEM), increase both the absolute radiosensitivity of the cells in hypoxia and the radiosensitizing effect of adding oxygen 7 ms after irradiation. Combined pretreatment of cells with BSO and NEM removes most of the non-protein thiol and some of the protein thiol; such treatment further increases the radiosensitivity of hypoxic cells but there is no further effect of adding oxygen 7 ms after irradiation. Addition of 2-mercaptoethanol to cells 7 ms after irradiation gives protection factors that increase with increasing severity of thiol depletion. Substantial radioprotection can still be observed when 2-mercaptoethanol is added 70 ms after irradiation of cells pretreated with BSO and NEM; there is no effect of adding 2-mercaptoethanol to such cells 50s after irradiation. These observations support the repair-fixation model of radiation damage and suggest that, in addition to the established role of non-protein thiol in chemical repair of radiation damage, other endogenous reducing agents such as protein thiol may be important in determining cellular radiosensitivity. A relatively long-lived thiol-modifiable component of radiation damage has been observed within hypoxic thiol-depleted cells.  相似文献   

4.
NHIK 3025 cells were synchronized by repeated mitotic selection. The S-phase was determined by 3H-thymidine incorporation and scintillation counting. By comparing the age-response surves of aerobic cells irradiated with 500 rad with those of extremely hypoxic (less than4 p.p.m. O2) cells irradiatedwith 1500 rad, it was found that the sensitizing effect of oxygen was not constant throuhgout the cycle. It was significantly higher in S, G2 and mitosis than in G1. No significant sensitizing effect of 120 p.p.m. O2 (compared with less than4 p.p.m.O2) was found on cells in G1 when the cells were irradiated with 1500 rad. In S, G2 and mitosis, however, the sensitizing effect of oxygen at 120 p.p.m. is considered to be significant. Experiments performed with cells irradiated with 2000 rad incontact with either less than4 p.p.m. O2 or 80 p.p.m. O2 showed the same trend, little sensitizing effect in G1 and higher in S, G2 andmitosis. Dose-response curves for cells in mid-G1 and mid-S under aerobic and extremely hypoxic conditions were well fitted by the formula S=exp (-alphaD-betaD2). From the dose-response curves it was conculded that the change in the sensitizing effect of oxygen throughout the cell-cycle only appeared for low doses (in the dose region where alpha dominates). The sensitizing effect of oxygen on cells in mid-G1 was found to be increasing with increasing dose.  相似文献   

5.
Summary Diploid wild type yeast strains 211, X2180 and the radiation sensitive mutantsrad2, 6, 9, 18, 50–55, and57 were exposed to cobalt-60 gamma radiation, in the presence and absence of oxygen, in order to identify the RAD loci involved in the repair of sublethal damage (SLD), recovery from potentially lethal damage (PLD) and oxygen enhancement ratio (OER). Response of wild type and mutants were compared in terms of survival curve parameters Dq, D10, D1, and D0. As compared to wild type the mutants showed increased sensitivity to radiation lethality, both under euoxic and hypoxic conditions, as judged by the reduction in Dq and D0 values. OER was reduced in therad2, 9, 18, 50, 51, and57 mutants indicating that these genes could be associated with the repair of gamma radiation damage produced under hypoxic condition.Shoulder (Dq) a measure of the ability of the cells to repair SLD, was reduced in therad6, 9, 18, 50, 53, and57 strains and was almost absent in therad51, 52, 54, and55 mutants. The ability to recover from PLD was equal to that of wild type strain in therad2, 6, 9, and18 strains, reduced in therad53, 55, and57 strains and was absent in therad50–52 and54 strains. In the mutants with liquid holding recovery ability, the extent of recovery from PLD produced under euoxic and hypoxic conditions was the same. These observations suggest that different groups of loci are involved in the control of different repair processes and that the expression of therad50–57 loci play a very important role in the repair of ionising radiation damage.On the basis of the liquid holding recovery data presented here and the observations made by others it is suggested that the unrepaired DSB constitute the PLD and that the repair of DSB involves recombination between homologous chromosomes.  相似文献   

6.
DNA double-strand break repair and restoration of viability in X-irradiated diploid yeast cells homozygous for rad50, rad51, rad52, rad55 mutations were studies under conditions of keeping the cells in non-nutrient medium, after irradiation. All the cells were synchronized at the G1 stage of the cell cycle. In contrast to the wild-type yeast, this group of mutants are unable to repair DNA double-strand breaks and do not enhance viability, when kept in non-nutrient medium after irradiation.  相似文献   

7.
When the cellular glutathione content is reduced, adding oxygen (130 mumol dm-3) 7 ms after irradiation of hypoxic cells increases the radiosensitivity (factor approximately 1.25), whereas it has much less effect in normal cells.  相似文献   

8.
The radioprotective role of endogenous and exogenous thiols was investigated, with survival as the end-point, after radiation exposure of cells under oxic and hypoxic conditions. Human cell strains originating from a 5-oxoprolinuria patient and from a related control were used. Due to a genetic deficiency in glutathione synthetase, the level of free SH groups, and in particular that of glutathione, is decreased in 5-oxoprolinuria cells. The glutathione synthetase deficient cells have a reduced oxygen enhancement ratio (1.5) compared to control cells (2.7). The radiosensitivity was assessed for both cell strains in the presence of different concentrations of an exogenous radioprotector:cysteamine. At concentrations varying between 0.1 and 20 mM, cysteamine protected the two cell strains to the same extent when irradiated under oxic and hypoxic conditions. The protective effect of cysteamine was lower under hypoxia than under oxic conditions for both cell strains. Consequently, the oxygen enhancement ratio decreased for both cell strains when cysteamine concentration increased. These results suggest that cysteamine cannot replace endogenous thiols as far as they are implicated in the radiobiological oxygen effect.  相似文献   

9.
Radiosensitive mutants rad2, rad9, and rad51 of Saccharomyces cerevisiae were X-irradiated with 120 Gy or 60 Gy, heated at 50 degrees C for 30 min or treated with a combination of both and incubated in nutrient medium at 30 degrees C. Cell number, percentage of budding cells, and cell cycle progression were determined in 45-min intervals. Cell cycle kinetics were investigated by flow cytofluorometry. Hyperthermia leads mainly to a lengthening of G1, whereas X-rays arrest cells of the rad2 and rad9 mutant in G2 and the rad51--mutant additionaly in a state with DNA contents above G2. Cell division delay is influenced by oxygen in all strains but to a lesser extent in the rad2 mutant. The effect of the combined treatment appears to be merely additive in the rad2 and rad9 mutant while the rad51 mutant is sensitized to X-irradiation by hyperthermia. No selective action of hyperthermia on hypoxic cells was found.  相似文献   

10.
Previous studies had indicated that haematopoietic cells (CFU-GM) which reside within compact bone are resistant to ionizing radiation and sensitive to the cytotoxic action of misonidazole (MISO) relative to cells which reside within the core of mouse femurs. It was postulated that the microenvironment within compact bone might be relatively hypoxic. CFU-GM from femur cores (Fraction 1) and from compact bone (Fraction 3) have been exposed to ionizing radiation and to the hypoxic cell radiosensitizer, MISO, under controlled conditions of oxygenation in vitro. The inherent radiosensitivity of aerated Fraction 1 CFU-GM is similar to their in vivo radiosensitivity. An oxygen enhancement ratio of 2.2 is observed for these cells in vitro. On the other hand, the in vitro radiosensitivity of hypoxic Fraction 3 CFU-GM was similar to their in vivo radiosensitivity. The oxygen enhancement ratio for Fraction 3 cells was 1.5, significantly lower than that observed for Fraction 1 cells. When CFU-GM cells were exposed to MISO under hypoxic conditions in vitro it was found that Fraction 3 CFU-GM were more sensitive to its cytotoxic action than were cells from Fraction 1. These data are consistent with the interpretation that some CFU-GM reside in an environment of relative hypoxia within the compact bone of the mouse femur.  相似文献   

11.
Kh T Iadgarov  S V Koval'tsova 《Genetika》1979,15(11):1944-1952
Effect of mutations rad2 and rad54 in homozygous state on survival, mitotic segregation and crossing-over induced by NMU in yeast was studied. Mutation rad2 did not influence on these effects of NMU. The mutation rad54 increased sensitivity to the lethal effect, the frequencies of NMU-induced segregation and crossing-over were decreased in the strain rad54 rad54. The recombinogenic effect of NMU on yeast was lower than under the action of UV and gamma rays.  相似文献   

12.
A radiosensitive mutant of Drosophila melanogaster rad(2)201GI was analysed for the capacity to repair DNA single- and double-strand breaks induced by gamma-rays. Analysis was performed on cell cultures derived from embryos of homozygous mutant stock and wild type strain Oregon R. The viability of irradiated cells was studied. It was shown that the mutant strain cells had increased lethality, just like a whole organism. Single-strand breaks were analysed by alkaline sucrose gradient centrifugation; double-strand breaks were monitored by neutral elution. The similarity of repair kinetics of single- and double-strand breaks in cells of rad(2)201GI and Oregon R was shown. Probable molecular mechanisms of rad(2)201GI mutant radiosensitivity are under discussion.  相似文献   

13.
Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and non-protein-bound SH (NPSH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20 per cent for the three types of radiation damage. Also under severely hypoxic conditions (0.01 microM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30 per cent). At somewhat higher concentrations of oxygen (0.5-10 microM) however, the sensitization amounted to about 90 per cent for the induction of ssb and dsb and about 50 per cent for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen.  相似文献   

14.
8-Methoxypsoralen has been shown to act as a radiosensitizer of hypoxic bacterial cells with uvrA, recA and uvrB and/or lexA mutations. No effect of the drug on the radiosensitivity of oxic bacteria with these mutations was observed. This drug differs from O2 and electron-affinic radiosensitizers in that its effect is not purely dose-modifying and can exceed the oxygen effect in certain mutants.  相似文献   

15.
It has been determined that W/+ and Wv/+ heterozygous mice, as compared with normal +/+ homozygous littermates, form significantly lower numbers of transient 5-day endogenous spleen colonies in response to X-irradiation. This defect was evident for doses of irradiation between 2–6 Gy (200–600 rad) and was associated with a slightly increased radiosensitivity of the assayed precursor cells (TE-CFU) in W heterozygotic mice. Moreover, the defect was transplantable, i.e., intrinsic to the marrow cells and not to the microenvironment, and was not associated with a similar decrease in cells which form erythropoietic bursts in vitro (BFUe). This study provides a cellular basis for increased radiosensitivity of W/+ and Wv/+ mice and suggests that the ‘W’ mutation is semi-dominant, both with respect to the white spotting and TE-CFU formation.  相似文献   

16.
I V Fedorova  S V Marfin 《Genetika》1982,18(2):207-214
The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.  相似文献   

17.
Survival curves of 3 diploid (D7) yeast strains: one wild-type, one deficient in excision of pyrimidine dimers (UV-sensitive) and one blocked in DNA double-strand-break repair (X-ray-sensitive), were compared after irradiation with cyclotron-produced fast neutrons. It was observed that both the UV-sensitive (rad3/rad3) and the X-ray-sensitive (rad52/rad52) mutants were more sensitive to neutrons than the wild-type. The role of DNA double-strand-breaks in neutron-induced cell death was further studied by comparing the relative sensitivity of the rad52/rad52 mutant to gamma-rays and fast neutrons. A comparison of the dose modification factors revealed that the deficiency in DNA double-strand-break repair did not make the yeast cells more sensitive to neutrons than to photons, which suggests that lesions of a different type may also be produced by neutrons. Survival curves obtained upon immediate plating and after delayed plating of neutron-irradiated cells showed that all 3 yeast strains were efficient in liquid holding recovery. The role of different repair pathways in cellular recovery from neutron-induced lethal damage is discussed.  相似文献   

18.
It is shown that a fraction of damage induced by high energy electrons (25 MeV) in certain rad mutants of the yeast Saccharomyces cerevisiae can be photoreactivated. The photoreactivable damage contributes to the lethal effect of this type of irradiation and modifies the oxygen effect. Using photoreactivating light or nigrosin, the amount of photoreactivable damage is reduced and the oxygen enhancement ratio (OER) for yeast mutants increases approximately to the OER found in wild-type cells.  相似文献   

19.
We have investigated the effect of extreme, prolonged hypoxia on the radiosensitivity of EMT6/SF cells in vitro. As cells were kept hypoxic for 1-24 h, their radiosensitivity increased, but no further change was noted for hypoxic incubation beyond 24 h. Chronically hypoxic (45 h) cells were more radiosensitive than acutely hypoxic (1 h) cells by a factor of 1.43. When chronically hypoxic cells were re-aerated, the increased radiosensitivity persisted, although it was reduced. Misonidazole (MISO) radiosensitization was equally effective under conditions of acute and chronic hypoxia. In contrast, MISO, SR2555 and SR2508 were more cytotoxic in chronically hypoxic cultures than in acutely hypoxic cells. Measurements suggested that intracellular thiols may play an important role in the effects observed.  相似文献   

20.
Louise Prakash 《Genetics》1974,78(4):1101-1118
Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号