首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The nature of acetylated Sudan Black B (aSBB) has been investigated, and it has been found, by thin layer chromatography, that each fraction of aSBB has an R f which is the same as that of a similar fraction of Sudan Black B (SBB). However, aSBB has been found to have fewer fractions, 9–12 than SBB, 14–16. The two major fractions from aSBB and SBB were examined, and a great similarity was found between the absorption spectra of the respective fractions of aSBB and SBB. The major fraction of aSBB was investigated by mass spectroscopy and found to have a similar molecular weight to that expected of SBB. This demonstrates that aSBB is not in fact acetylated, and that the components of aSBB are chemically no different from the corresponding components of SBB.  相似文献   

2.
The interactions between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) play significant roles in the homeostasis of the blood vessel during vascular remodeling. Cell adhesion and spreading are an essential process for VSMC migration, survival and proliferation in the events of vascular physiology and pathophysiology. However, effects of ECs on adhesion and spreading of VSMCs have not been characterized yet. Here, the interaction of ECs and VSMCs on adhesion and spreading of VSMCs were investigated by using a coculture system. The results showed that VSMCs cocultured with ECs exhibited a significant increase in the number of adherent and spreading cells, and much more mRNA (twofold, P<0.01) and protein (threefold, P<0.05) expression of beta(1)-integrin comparing to the control, i.e., VSMCs cultured alone. Furthermore, the enhanced functional activity of beta(1)-integrin expression was confirmed by FACS. A beta(1)-integrin blocking antibody (P5D2) could inhibit the EC-induced VSMC adhesion and spreading. It was demonstrated that in correspondence with enhanced cell adhesion, ECs also prompted focal adhesion complex assembly and stress fiber formation of VSMCs. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway was more pronouncedly activated in response to VSMC attachment. Our results for the first time show that coculture with ECs enhances VSMC adhesion and spreading by up-regulating beta(1)-integrin expression and activating the PI3K/Akt pathway, suggesting that the interaction between ECs and VSMCs serves an important role in vascular homeostasis and remodeling.  相似文献   

3.
Activity of tissue factor (TF) in membrane microparticles (MPs) produced in vitro by endothelial cells (ECs), monocytes, THP-1 monocytic cells, granulocytes, and platelets was investigated. ECs were isolated from human umbilical vein, and monocytes, granulocytes, and platelets–from the blood of healthy donors. ECs, monocytes, and THP-1 cells were activated by bacterial lipopolysaccharide, granulocytes–by lipopolysaccharide or phorbol myristate acetate, and platelets - by SFLLRN, thrombin receptor-activating peptide. MPs were sedimented from the culture medium or supernatant of activated cells at 20,000g for 30 min. Coagulation activity of MPs was analyzed in a modified recalcification assay by assessing their effects on coagulation of donor plasma depleted of endogenous MPs (by centrifuging at 20,000g for 90 min). MPs from all cell types accelerated plasma coagulation. Antibodies blocking TF activity prolonged coagulation lagphase in the presence of MPs from ECs, monocytes, and THP-1 cells (by 2.7-, 2.0-, and 1.8-fold, respectively), but did not influence coagulation in the presence of MPs from granulocytes and platelets. In accordance with these data, TF activity measured by its ability to activate factor X was found in MPs from ECs, monocytes, and THP-1 cells, but not in MPs from granulocytes and platelets. The data obtained indicate that active TF is present in MPs produced in vitro by ECs, monocytes, and THP-1 cells, but not in MPs derived from granulocytes and platelets.  相似文献   

4.
Summary Here, we describe assay systems that utilize serum-free defined media to evaluate capillary morphogenesis during human endothelial cell (EC) invasion of three-dimensional collagen matrices. ECs invade these matrices over a 1–3-d period to form capillary tubes. Blocking antibodies to the α2β1 integrin interfere with invasion and morphogenesis while other integrin blocking antibodies do not. Interestingly, we observed increased invasion of ECs toward a population of underlying ECs undergoing morphogenesis. In addition, we have developed assays on microscope slides that display the invasion process horizontally, thereby enhancing our ability to image these events. Thus far, we have observed intracellular vacuoles that appear to regulate the formation of capillary lumens, and extensive cell processes that facilitate the interconnection of ECs during morphogenic events. These assays should enable further investigation of the morphologic steps and molecular events controlling human capillary tube formation in three-dimensional extracellular matrices.  相似文献   

5.
The function of T cells and B cells is to recognize specific “non-self” antigens, during a process known as antigen presentation. Once they have identified an invader, the cells generate specific responses that are tailored to maximally eliminate specific pathogens or pathogen-infected cells. Endothelial cells (ECs) can trigger the activation of T cells through their class I and class II MHC molecules. In this study, we examined the effect of ECs on the proliferation of lymphocytes. We report that the proliferation of T and B cells can be improved by interaction with ECs. LEF-1 is one of the main molecular mediators in this process, and the inhibition of LEF-1 induces apoptosis. These results suggest that LEF-1 modulates positively the proliferation of lymphocytes induced by their interaction with ECs.  相似文献   

6.
This paper establishes the spawning habitat of the Brazilian sardine Sardinella brasiliensis and investigates the spatial variability of egg density and its relation with oceanographic conditions in the shelf of the south‐east Brazil Bight (SBB). The spawning habitats of S. brasiliensis have been defined in terms of spatial models of egg density, temperature–salinity plots, quotient (Q) analysis and remote sensing data. Quotient curves (QC) were constructed using the geographic distribution of egg density, temperature and salinity from samples collected during nine survey cruises between 1976 and 1993. The interannual sea surface temperature (SST) variability was determined using principal component analysis on the SST anomalies (SSTA) estimated from remote sensing data over the period between 1985 and 2007. The spatial pattern of egg occurrences in the SBB indicated that the largest concentration occurred between Paranaguá and São Sebastião. Spawning habitat expanded and contracted during the years, fluctuating around Paranaguá. In January 1978 and January 1993, eggs were found nearly everywhere along the inner shelf of the SBB, while in January 1988 and 1991 spawning had contracted to their southernmost position. The SSTA maps for the spawning periods showed that in the case of habitat expansion (1993 only) anomalies over the SBB were zero or slightly negative, whereas for the contraction period anomalies were all positive. Sardinella brasiliensis is capable of exploring suitable spawning sites provided by the entrainment of the colder and less‐saline South Atlantic Central Water onto the shelf by means of both coastal wind‐driven (to the north‐east of the SBB) and meander‐induced (to the south‐west of the SBB) upwelling.  相似文献   

7.
Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85–90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin’s interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15–20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin’s binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.  相似文献   

8.
The nature of acetylated Sudan Black B (aSBB) has been investigated, and it has been found, by thin layer chromatography, that each fraction of aSBB has an Rf which is the same as that of a similar fraction of Sudan Black B (SBB). However, aSBB has been found to have fewer fractions, 9-12 than SBB, 14-16. The two major fractions from aSBB and SBB were examined, and a great similarity was found between the absorption spectra of the respective fractions of aSBB and SBB. The major fraction of aSBB was investigated by mass spectroscopy and found to have a similar molecular weight to that expected of SBB. This demonstrates that aSBB is not in fact acetylated, and that the components of aSBB are chemically no different from the corresponding components of SBB.  相似文献   

9.
Summary The yolk platelets ofXenopus laevis have been studied by thin-section and freeze-fracture electron microscopy to characterize the boundary membrane during yolk formation. Throughout vitellogenesis, large yolk platelets are in close contact with smaller nascent yolk organelles. Two types of primordial yolk platelets (I and II) have been discriminated. After membrane fusion these precursors can be completely incorporated into the main body of existing platelets, numerous yolk crystals then merge and form one uniformly stratified core. Lipid droplets are tightly attached to the membrane at all developmental stages of yolk platelets. A direct connection of endoplasmic reticulum to the membranes of yolk platelets was not observed. On freezeetching replicas, yolk-platelet membranes present fracture faces with intramembranous particles (IMP) of various sizes and a heterogeneous distribution of approximately 200–600 IMP/μm2 at the E face, and 1200–2100 IMP/μm2 at the P face. Again, this presentation of the membrane exhibits neither anastomoses to the endoplasmic reticulum, nor caveolae that exclude the uptake of yolk-containing vesicles into these yolk organelles. Proteinaceous yolk platelets tend to fracture along their periphery through the superficial layers.  相似文献   

10.
Rats with monopolar electrodes implanted in the lateral hypothalamus were trained to self-stimulate, each under 38 different electrical stimulus values. Stimulus-bound drinking and eating (SBB) were elicited by stimulating the rats through the same electrode with the same parameters and the same rate at which they self-administered the stimulation.It was observed that the frequency of SBB depended on the parameters of the electrical stimulus. The Spearman rank order correlation was computed between strength of SBB and the strength of the reinforcing effect elicited by brain stimulation. A factor analysis showed that the reinforcing process elicited by brain stimulation in this area is composed of several factors and that SBB is not loaded in all the factors composing reinforcement.  相似文献   

11.
Endothelial cells (ECs) and smooth muscle cells (SMCs), which are the major component cells of blood vessels, produce various bioactive substances and communicate with each other through them. Although several studies of the interaction between ECs and SMCs have been reported, the effect of coculture with SMCs on ECs is still obscure. To clarify the interaction of ECs and SMCs, we examined the effect of coculture with SMCs on the proliferation, the IL‐1β secretion, the PDGF production and tube formation of ECs, using the coculture model: transferable wells and collagen gel. IL‐1 and PDGF are considered to be related to progression of atherosclerosis. Proliferation and tube formation of ECs are associated with repair of vessels. In the transferable well system coculture with SMCs stimulated the proliferation of ECs, and enhanced the IL‐1β secretion of ECs and in the collagen gel system coculture with SMCs induced the tube formation of ECs, and appeared to enhance the PDGF production of ECs. In conclusion, the effect of coculture with SMCs on ECs has two conflicting aspects: progression of atherosclerosis and angiogenesis. These results suggest that an imbalance of their effects may lead to pathological events. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The chemokine CXCL12 (also known as stromal cell-derived factor, SDF-1) is constitutively expressed by stromal resident cells and is involved in the homeostatic and inflammatory traffic of leukocytes. Binding of CXCL12 to glycosaminoglycans on endothelial cells (ECs) is supposed to be relevant to the regulation of leukocyte diapedesis and neoangiogenesis during inflammatory responses. To improve our understanding of the relevance of this process to rheumatoid arthritis (RA), we have studied the mechanisms of presentation of exogenous CXCL12 by cultured RA ECs. RA synovial tissues had higher levels of CXCL12 on the endothelium than osteoarthritis (OA) tissues; in both, CXCL12 colocalized to heparan sulfate proteoglycans (HSPGs) and high endothelial venules. In cultured RA ECs, exogenous CXCL12α was able to bind in a CXCR4-independent manner to surface HSPGs. Desulfation of RA EC HSPGs by pretreatment with sodium chlorate, or by replacing in a synthetic CXCL12α the residues Lys24 and Lys27 by Ser (CXCL12α-K2427S), decreased or abrogated the ability of the chemokine to bind to RA ECs. Ex vivo, synovial ECs from patients with either OA or RA displayed a higher CXCL12-binding capacity than human umbilical vein ECs (HUVECs), and in HUVECs the binding of CXCL12 was increased on exposure to tumor necrosis factor-α or lymphotoxin-α1β2. Our findings indicate that CXCL12 binds to HSPGs on ECs of RA synovium. The phenomenon relates to the interaction of HSPGs with a CXCL12 domain with net positive surface charge located in the first β strand, which encompasses a canonical BXBB HSPG-binding motif. Furthermore, we show that the attachment of CXCL12 to HSPGs is upregulated by inflammatory cytokines. Both the upregulation of a constitutive chemokine during chronic inflammation and the HSPG-dependent immobilization of CXCL12 in EC surfaces are potential sites for therapeutic intervention.  相似文献   

13.
The role of microtubules in platelet aggregation and secretion has been analyzed using platelets permeabilized with digitonin and monoclonal antibodies to alpha (DM1A) and beta (DM1B) subunits of tubulin. Permeabilized platelets were able to undergo aggregation and secretory release. However, threshold doses of agonists capable of eliciting a second wave of aggregation and the platelet release reaction were higher than in control platelets exposed to dimethyl sulfoxide, the solvent for digitonin. Both antibodies to alpha and beta tubulin caused a further increase in the threshold concentration of agonists and inhibited the secretory release of permeabilized platelets, but were ineffective using intact platelets. Neither monoclonal antibody inhibited polymerization or depolymerization of platelet tubulin in vitro. Antibodies to platelet actin and myosin also exhibited an inhibitory activity on platelet aggregation albeit less severe than that observed with the antibodies to alpha and beta tubulin. There was evidence of an interaction between DM1A and DM1B and the antibodies to actin and myosin. The interaction of platelet tubulin and myosin was investigated by two different methods. (1) Coprecipitation of the proteins at low ionic strength at which tubulin by itself did not precipitate and (2) affinity chromatography on columns of immobilized myosin. Tubulin freed of its associated proteins (MAPs) by phosphocellulose chromatography bound to myosin in a molar ratio which approached 2. Platelet actin competed with tubulin for 1 binding site on the myosin molecule. MAPs also reduced the binding stoichiometry of tubulin/myosin. Treatment of microtubule protein with p-chloromercuribenzoate or colchicine did not influence its binding to myosin. DM1A and DM1B inhibited the interaction of tubulin and myosin. This effect could also be demonstrated by reaction of electrophoretic transblots of extracted platelet tubulin with the respective proteins. We interpret these results as evidence for an interference of the two monoclonal antibodies to the tubulin subunits (DM1A and DM1B) with the translocation of microtubule protein from its submembranous site to a more central one during the activation process.  相似文献   

14.
A spectrophotometric method for determining the viability of sporangia and zoospores of the oomycete Plasmopara viticola (causal agent of grapevine downy mildew) is described and evaluated to overcome the limitations of currently available methods for assessing propagule viability. Sporangia produced on leaf discs in the laboratory were harvested at different days after the initiation of sporulation (DAS) to yield differences in sporangium viability. Sporangia were suspended in sterile water, the suspensions were placed in a cuvette, and sporangium germination was monitored in a spectrophotometer (λ = 600 nm) at 2- to 3-min intervals for 5 hr. Absorbance started to increase after sporangia were suspended in water for ~30–60 min followed by major peak(s) for younger sporangia (1–3 DAS), whereas low to no increase in absorbance was observed for senescent sporangia (>7 DAS). Microscopic observation confirmed that the increase in absorbance corresponded to the release and active swimming of zoospores, whereas absorbance decreased when zoospores encysted and settled. A positive correlation (r = .839, p = .0365) was observed when the time to the initial increase in absorbance was plotted against the age of sporangia. The time to the absorbance peak (marking the time of maximum zoospore movement) was shortest for immature sporangia (0 DAS), longest for young sporangia (2 DAS) and decreased for mature and senescent sporangia. A similar pattern was observed for the standardized area under the absorbance curve (indicating the overall quantity of zoospores released), for which values were lowest for immature and senescent sporangia, highest for young sporangia and intermediate for mature sporangia. Consistent patterns obtained across two independent experiments suggest that the method is reproducible and may be further developed for other zoospore-releasing pathogens.  相似文献   

15.
Summary The growth of the endothelial cell (EC) is tightly regulated throughout the body. Many factors have been implicated in modulating EC growth including diffusible compounds, cell-to-cell interactions, and the extracellular matrix (ECM). Retinol, or vitamin A alcohol, has recently been shown to inhibit the growth of bovine capillary ECs, in vitro. Retinoids are known to modify ECM in other cell systems, and pure ECM components have been shown to effect EC growth rates. We, therefore, examined the role of the matrix in the retinol-induced inhibition of ECs. Cell-free matrices from control and vitamin A-treated ECs were prepared by removing cells with EGTA treatment after 7 d of culture. Matrix proteins were analyzed by solubilizing the matrices in 5M quanidine-HCl and performing Western blot analysis using specific antibodies to matrix proteins. In isolating the ECM, we observed that retinol-treated cultures of ECs were resistant to EGTA removal; retinol-treated ECs required twice the exposure time to EGTA to detach from their matrix than did controls cells. Western blot analysis of matrix proteins derived from control and retinol-treated EC cultures demonstrated a 1.6-fold increase in lamininβ chains and a 2.5-fold increase in fibronectin in the ECM of retinol-treated EC compared to control cell matrix. Functional properties of these matrices were assessed by plating control and Day 6 retinol-treated ECs onto the matrices and measuring attachment and growth by determining cell numbers at 24, 72, and 144 h. These studies revealed that control cells attached in greatest numbers to a control matrix whereas retinol-treated ECs preferentially attached to a matrix derived from retinol-treated cells. Furthermore, control ECs which grew rapidly on a control matrix were growth inhibited on a retinol-derived matrix. These data indicate that vitamin A treatment of ECs effects both their phenotype and influences the composition and the functional properties of their underlying ECM. These studies also demonstrate that alterations of the matrix are at least in part responsible for the growth inhibition of EC by retinol.  相似文献   

16.
Electroporation has been considered one of the most efficient non-viral based methods to deliver genes regardless of frequently observed high cell mortality. In this study we used a microporation technique to optimise the delivery of plasmid DNA encoding green fluorescence protein (GFP) to human bone marrow mesenchymal stem cells (BM-MSC). Using resuspension buffer (RB) and as low as 1.5 × 105 cells and 1 μg of DNA, we achieved 40% of cells expressing the transgene, with cell recovery and cell viabilities of 85% and 90%, respectively. An increase in DNA amount did not significantly increase the number of transfected cells but clearly reduced cell recovery. A face-centered composite design was used to unveil the conditions giving rise to optimal plasmid delivery efficiencies when using a sucrose based microporation buffer (SBB). The BM-MSC proliferation kinetics were mainly affected by the presence of plasmid and not due to the microporation process itself although no effect was observed on their immunophenotypic characteristics and differentiative potential. Based on the data shown herein microporation demonstrated to be a reliable and efficient method to genetically modify hard-to-transfect cells giving rise to the highest levels of cell survival reported so far along with superior gene delivery efficiencies.  相似文献   

17.
Vascular endothelial cells (ECs) have a finite lifespan when cultured in vitro and eventually enter an irreversible growth arrest state called "cellular senescence." It has been shown that sphingolipids may be involved in senescence; however, the molecular links involved are poorly understood. In this study, we investigated the signaling and functions of sphingosine 1-phosphate (S1P), a serum-borne bioactive sphingolipid, in ECs of different in vitro ages. We observed that S1P-regulated responses are significantly inhibited and the S1P(1-3) receptor subtypes are markedly increased in senescent ECs. Increased expression of S1P(1) and S1P(2) was also observed in the lesion regions of atherosclerotic endothelium, where senescent ECs have been identified in vivo. S1P-induced Akt and ERK1/2 activation were comparable between ECs of different in vitro ages; however, PTEN (phosphatase and tensin homolog deleted on chromosome 10) activity was significantly elevated and Rac activation was inhibited in senescent ECs. Rac activation and senescent-associated impairments were restored in senescent ECs by the expression of dominant-negative PTEN and by knocking down S1P(2) receptors. Furthermore, the senescent-associated impairments were induced in young ECs by the expression of S1P(2) to a level similar to that of in vitro senescence. These results indicate that the impairment of function in senescent ECs in culture is mediated by an increase in S1P signaling through S1P(2)-mediated activation of the lipid phosphatase PTEN.  相似文献   

18.
This study was performed to determine whether murine alternatively spliced tissue factor (masTF) acts analogously to human alternatively spliced tissue factor (hasTF) in promoting neovascularization via integrin ligation. Immunohistochemical evaluation of a spontaneous murine pancreatic ductal adenocarcinoma model revealed increased levels of masTF and murine full-length tissue factor (mflTF) in tumor lesions compared with benign pancreas; furthermore, masTF colocalized with mflTF in spontaneous aortic plaques of Ldlr(-/-) mice, indicating that masTF is likely involved in atherogenesis and tumorigenesis. Recombinant masTF was used to perform in vitro and ex vivo studies examining its integrin-mediated biologic activity. Murine endothelial cells (ECs) rapidly adhered to masTF in a β3-dependent fashion. Using adult and embryonic murine ECs, masTF potentiated cell migration in transwell assays. Scratch assays were performed using murine and primary human ECs; the effects of masTF and hasTF were comparable in murine ECs, but in human ECs, the effects of hasTF were more pronounced. In aortic sprouting assays, the potency of masTF-triggered vessel growth was undistinguishable from that observed with hasTF. The proangiogenic effects of masTF were found to be Ccl2-mediated, yet independent of vascular endothelial growth factor. In murine ECs, masTF and hasTF upregulated genes involved in inflammatory responses; murine and human ECs stimulated with masTF and hasTF exhibited increased interaction with murine monocytic cells under orbital shear. We propose that masTF is a functional homolog of hasTF, exerting some of its key effects via β3 integrins. Our findings have implications for the development of murine models to examine the interplay between blood coagulation, atherosclerosis and cancer.  相似文献   

19.
Summary Using a monoclonal antibody (TM60) against glycoprotein (GP) Ib, we determined immunocytochemically how GPIb is distributed on the platelet surface. When glutaraldehyde-fixed platelets were incubated with TM60, a uniform distribution of ferritin particles which represent the localization of GPIb was observed on the surface membrane of platelets. The particles were distributed at intervals of about 100 nm. The number of ferritin particles on the surface of one side were 2070–4150 (2940 ± 790; mean ±s.d.,n = 10) under the scanning electron microscope. The distribution of ferritin particles was somewhat disarranged on the surface of unfixed platelets incubated with TM60 compared to that in the fixed platelets. Cluster-like structures of ferritin particles were observed in several places. When platelets were activated with ristocetin or thrombin, the distribution of ferritin particles was disturbed and cluster formation was observed in several places on the surface. These findings suggest that GPIb is uniformly distributed on the surface of platelets in the resting state, and that cluster formation occurs during activation of platelets.  相似文献   

20.
Using histochemical staining and FACS-analysis we have studied the basal and TNF-alpha induced expression of E-selectin, ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (ECs) exposed to simulated hypogravity. Control ECs did not contain detectable amounts of E-selectin or VCAM-1 but were ICAM-1 positive. As soon as after 6-8 hrs of clinorotation at 5 RPM the cellular content of ICAM- 1 increased. Moreover, hypogravity potentiated the effect of inflammatory cytokines (TNF-alpha and IL-1) on ICAM-1 expression. No increase in E-selectin or VCAM-1 expression was observed in ECs exposed to hypogravity itself. However, hypogravity reduced E-selectin and VCAM-1 expression in cell cultures activated by cytokines, more visible at their low (5-10 U/ml) concentrations. Both, control and clinorotated ECs poorly supported spontaneous lymphocyte adhesion; the adhesion of PMA-activated leukocytes was 15-20-fold higher. The interaction of unstimulated lymphocytes with cytokine-activated endothelium was more noticeable but significantly lower in cultures exposed to hypogravity. Activated blood cells interacted with endothelium more effectively, particularly, under hypogravity. Obtained results suggest that EC adhesion molecule expression and endothelium-lymphocyte interaction are altered under simulated hypogravity conditions in direction of increase of endotlielial adhesiveness for activated blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号