首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a multi-trait approach to identify potentially vulnerable species of Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), collectively referred to as EPT, to the impacts of climate change (CC). The “climate change vulnerability score” (CCVS) is an aggregation of six autecological traits that are known to be associated with vulnerability to CC: endemism, micro-endemism, temperature preference, altitudinal preference, stream zonation preference, and life history. We assigned a vulnerability score (0 – invulnerable to 6 – highly vulnerable to climate change) to 1940 EPT species and discussed the applicability of the index at three spatial scales: (1) continental (Europe), (2) state (the German Federal State of North Rhine-Westphalia) and (3) a river basin (the Ruhr River). We identified 157 EPT species (ca. 8%) as highly vulnerable to climate change (CCVS  4), including 95 species of caddisflies, 60 species of stoneflies and two species of mayflies. These are mostly found in France and Italy (52 species each), Spain and Slovenia (36 and 34, respectively), and Austria and Switzerland (30 species each), of which 95 are caddisflies, 60 stoneflies, and 2 mayflies. Using data collected in routine regional sampling we show that although no endemic EPTs were found in the German Federal State of North Rhine-Westphalia, eight species can still be identified as relatively vulnerable to CC (CCVS of 3). Almost all of these species are occurring in the ‘mountainous’ regions of the state (>200 m a.s.l.), the Sauerland and the Eifel. The upper reaches of the Ruhr catchment have been found to be relatively rich in vulnerable species, including several locally rare species. This index can assist conservationists to identify “hotspots” in terms of climate vulnerability and climate change refuge areas that can be considered for protection or the application of restoration measures at a local and regional scale. Nevertheless, not all species have complete autecological information, which hinders our ability to fully recognize the areas of priority. To further stabilize and enhance the applicability of this method, it is essential to fill these knowledge gaps in the future.  相似文献   

2.
Using spatial predictions of future threats to biodiversity, we assessed for the first time the relative potential impacts of future land use and climate change on the threat status of plant species. We thus estimated how many taxa could be affected by future threats that are usually not included in current IUCN Red List assessments. Here, we computed the Red List status including future threats of 227 Proteaceae taxa endemic to the Cape Floristic Region, South Africa, and compared this with their Red List status excluding future threats. We developed eight different land use and climate change scenarios for the year 2020, providing a range of best‐ to worst‐case scenarios. Four scenarios include only the effects of future land use change, while the other four also include the impacts of projected anthropogenic climate change (HadCM2 IS92a GGa), using niche‐based models. Up to a third of the 227 Proteaceae taxa are uplisted (become more threatened) by up to three threat categories if future threats as predicted for 2020 are included, and the proportion of threatened Proteaceae taxa rises on average by 9% (range 2–16%), depending on the scenario. With increasing severity of the scenarios, the proportion of Critically Endangered taxa increases from about 1% to 7% and almost 2% of the 227 Proteaceae taxa become Extinct because of climate change. Overall, climate change has the most severe effects on the Proteaceae, but land use change also severely affects some taxa. Most of the threatened taxa occur in low‐lying coastal areas, but the proportion of threatened taxa changes considerably in inland mountain areas if future threats are included. Our approach gives important insights into how, where and when future threats could affect species persistence and can in a sense be seen as a test of the value of planned interventions for conservation.  相似文献   

3.
Understanding and predicting how biological communities respond to climate change is critical for assessing biodiversity vulnerability and guiding conservation efforts. Glacier‐ and snow‐fed rivers are one of the most sensitive ecosystems to climate change, and can provide early warning of wider‐scale changes. These rivers are frequently used for hydropower production but there is minimal understanding of how biological communities are influenced by climate change in a context of flow regulation. This study sheds light on this issue by disentangling structural (water temperature preference, taxonomic composition, alpha, beta and gamma diversities) and functional (functional traits, diversity, richness, evenness, dispersion and redundancy) effects of climate change in interaction with flow regulation in the Alps. For this, we compared environmental and aquatic invertebrate data collected in the 1970s and 2010s in regulated and unregulated alpine catchments. We hypothesized a replacement of cold‐adapted species by warming‐tolerant ones, high temporal and spatial turnover in taxa and trait composition, along with reduced taxonomic and functional diversities in consequence of climate change. We expected communities in regulated rivers to respond more drastically due to additive or synergistic effects between flow regulation and climate change. We found divergent structural but convergent functional responses between free‐flowing and regulated catchments. Although cold‐adapted taxa decreased in both of them, greater colonization and spread of thermophilic species was found in the free‐flowing one, resulting in higher spatial and temporal turnover. Since the 1970s, taxonomic diversity increased in the free flowing but decreased in the regulated catchment due to biotic homogenization. Colonization by taxa with new functional strategies (i.e. multivoltine taxa with small body size, resistance forms, aerial dispersion and reproduction by clutches) increased functional diversity but decreased functional redundancy through time. These functional changes could jeopardize the ability of aquatic communities facing intensification of ongoing climate change or new anthropogenic disturbances.  相似文献   

4.
Global climate change is a threat to ecosystems that are rich in biodiversity and endemism, such as the World Heritage‐listed subtropical rainforests of central eastern Australia. Possible effects of climate change on the biota of tropical rainforests have been studied, but subtropical rainforests have received less attention. We analysed published data for an assemblage of 38 subtropical rainforest vertebrate species in four taxonomic groups to evaluate their relative vulnerability to climate change. Focusing on endemic and/or threatened species, we considered two aspects of vulnerability: (i) resistance, defined by indicators of rarity (geographical range, habitat specificity and local abundance); and (ii) resilience, defined by indicators of a species potential to recover (reproductive output, dispersal potential and climatic niche). Our analysis indicated that frogs are most vulnerable to climate change, followed by reptiles, birds, then mammals. Many species in our assemblage are regionally endemic montane rainforest specialists with high vulnerability. Monitoring of taxa in regenerating rainforest showed that many species with high resilience traits also persisted in disturbed habitat, suggesting that they have capacity to recolonize habitats after disturbance, that is climate change‐induced events. These results will allow us to prioritize adaptation strategies for species most at risk. We conclude that to safeguard the most vulnerable amphibian, reptile and bird species against climate change, climatically stable habitats (cool refugia) that are currently without protection status need to be identified, restored and incorporated in the current reserve system. Our study provides evidence that montane subtropical rainforest deserves highest protection status as habitat for vulnerable taxa.  相似文献   

5.
Rapid anthropogenic climate change is driving threatened biodiversity one step closer to extinction. Effects on native biodiversity are determined by an interplay between species' exposure to climate change and their specific ecological and life-history characteristics that render them even more susceptible. Impacts on biodiversity have already been reported, however, a systematic risk evaluation of threatened marine populations is lacking. Here, we employ a trait-based approach to assess the risk of 90 threatened marine Mediterranean species to climate change, combining species' exposure to increased sea temperature and intrinsic vulnerability. One-quarter of the threatened marine biodiversity of the Mediterranean Sea is predicted to be under elevated levels of climate risk, with various traits identified as key vulnerability traits. High-risk taxa including sea turtles, marine mammals, Anthozoa and Chondrichthyes are highlighted. Climate risk, vulnerability and exposure hotspots are distributed along the Western Mediterranean, Alboran, Aegean, and Adriatic Seas. At each Mediterranean marine ecoregion, 21%–31% of their threatened species have high climate risk. All Mediterranean marine protected areas host threatened species with high risk to climate change, with 90% having a minimum of 4 up to 19 species of high climate risk, making the objective of a climate-smart conservation strategy a crucial task for immediate planning and action. Our findings aspire to offer new insights for systematic, spatially strategic planning and prioritization of vulnerable marine life in the face of accelerating climate change.  相似文献   

6.
A joint analysis considering the world-wide distribution and threat status of Central European vascular plants was carried out to derive conservation priorities for threatened species. A list of 417 taxa is presented, which are threatened throughout Central Europe and/or show a predominantly Central European distribution. As a first step, all plants mentioned in Central European national Red Lists were included in a synoptic table, resulting in a total of 3255 taxa threatened or rare in at least one country. To select species with a high conservation priority, two parameters were estimated: threat status for Central Europe and a new category termed responsibility for the conservation of a species. As criteria for this second parameter, we used the proportion of Central Europe on the world range of a species, the position of Central Europe within this range, and its world-wide threat status. A simple category system including four responsibility categories is proposed. For all species selected, threat status and a responsibility assessment for the whole of Central Europe is given, as well as position and proportion of Central Europe on their world range. By comparison of threat status and responsibility, this list provides a background for assessing national conservation priorities as well as for making decisions about inclusion in international conventions on species conservation. This was shown by a comparison of the species selected using this approach with those included in the two most important European instruments for species conservation – the Berne Convention and the Habitats Directive.  相似文献   

7.
The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies) level when resources are limited and several factors affect conservation success.  相似文献   

8.
Effective conservation management for climate adaptation rests on understanding the factors driving species’ vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia’s threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species.  相似文献   

9.
Recovery plans are the main tool used for restoration of threatened species in Australia, and identification of key threatening processes is an important feature of them. The aim of this study was to identify how climate change can be incorporated into the recovery planning process using a case study of threatened vertebrates in a global biodiversity hotspot, southwestern Australia. Analysis of 79 recovery planning documents for threatened vertebrate species in the region found that prior to the year 2004, climate change was not included as a threatening process. Post 2004, 32 of 54 (59.3%) documents included climate change as a threatening process. Using bioclimatic modelling, 43 of these species were ranked in terms of their potential exposure to climate change, and a gradient of management intervention aimed at mitigating their exposure to climate change was proposed. This intervention gradient ranged from active management actions aimed at species potentially at risk of extinction due to climate change, through to preservation of habitat in species predicted to lose between 0 and 25% of their current population size. It was proposed that as a priority, the recovery documentation of the 20 species predicted to be most at risk and thus needing a high level of management intervention should identify climate change as a key threatening process, and that more comprehensive analyses of climate change vulnerability be undertaken for these species. Such an approach aimed at prioritising climate change mitigation in threatened species would be useful for other regions where it has been predicted that climate change could have a negative impact on biodiversity.  相似文献   

10.
Threatened (n = 59) and non-threatened (n = 308) Swedish forest vascular plant taxa were compared with regard to a number of variables, including distribution, site factors taxonomy, morphology and flowering time A majority of the threatened taxa occur in the southern deciduous woodlands, which only constitute c 0.5% of the total forested area in Sweden There are considerably more threatened taxa in southern than in northern Sweden, a consequence of the successively higher number of forest vascular plants from the north towards the south Threatened taxa grow in forests with significantly higher soil fertility than non-threatened taxa Significant differences were also revealed regarding light conditions, soil water conditions and month of flowering Threatened taxa grow on soils with significantly higher pH and also with slightly more available nitrogen than non-threatened taxa, as measured with Ellenberg indicator values Forest stands on fertile soils are uncommon in Sweden and they are also very species-rich Soil-type rarity in combination with high species diversity in these soil types thus partly explain why taxa are included in the Swedish Red data list  相似文献   

11.
Aquatic insects are the dominant taxon group in most freshwater ecosystems. As temperature is the main driver of their life cycle development, metabolic activity, and geographic distribution, these macroinvertebrates are particularly suitable for large scale and comparative studies of freshwater community responses to climate change. A dataset of bio-ecological traits of 1,942 Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa was used to analyze (1) the relationships among traits, (2) the potential vulnerability of EPT species to climate change, and (3) the geographical occurrence patterns of these potentially endangered species at the scale of European ecoregions. By means of a fuzzy correspondence analysis (FCA), two gradients emerged: (1) a longitudinal gradient, describing successive upstream–downstream features, and (2) a biogeographical gradient, separating endemic and micro-endemic species from widely distributed taxa. Moreover, aquatic insects of southern European ecoregions emerged as those most endangered in terms of potential vulnerability to climate change. Comparative multi-taxon studies provide important new insights into freshwater ecosystem functioning and responses to climate change, and could be the first step toward developing integrative monitoring or assessment tools (e.g., trait-based indicators at the species level) by means of non-arbitrary statistical methods.  相似文献   

12.
Geographical gradients in species richness and the degree to which different taxa show congruent patterns remain unknown for many taxonomic groups. Here, I examined broad-scale species richness patterns in five groups of freshwater organisms; macrophytes, dragonflies, stoneflies, aquatic beetles and fishes. The analyses were based on provincial distribution records in Denmark, Norway, Sweden and Finland. In general, variation in species richness across provinces was concordant among the groups, but stoneflies showed weaker negative relationships with the other taxonomic groups. Species richness in most groups decreased with increasing latitude and altitude, and a considerable part of the variation was explained by mean July temperature. However, stoneflies showed a reversed pattern, with species richness correlating positively, albeit more weakly, with mean provincial altitude. Nevertheless, combined species richness of all five taxa showed a strong relationship with mean July temperature, accounting for 74% of variation in provincial species richness alone. Such temperature-controlled patterns suggest that regional freshwater biodiversity will strongly respond to climate change, with repercussions for local community organization in freshwater ecosystems in Fennoscandia.  相似文献   

13.
Climate change is now estimated by some biologists to be the main threat to biodiversity, but doubts persist regarding which species are most at risk, and how best to adapt conservation management. Insects are expected to be highly responsive to climate change, because they have short life cycles which are strongly influenced by temperature. Insects also constitute the most diverse taxonomic group, carrying out biotic interactions of importance for ecological functioning and ecosystem services, so their responses to climate change are likely to be of considerable wider ecological significance. However, a review of recent published evidence of observed and modelled effects of climate change in ten high-ranking journals shows that comparatively few such studies have focused on insects. The majority of these studies are on Lepidoptera, because of the existence of detailed contemporary and historical datasets. These biases in published information may influence conclusions regarding the threat of climate change to insect biodiversity. Assessment of the vulnerability of insect species protected by the Bern Convention on the Conservation of European Wildlife and Natural Habitats also emphasises that most information is available for the Lepidoptera. In the absence of the necessary data to carry out detailed assessments of the likely effects of climate change on most threatened insects, we consider how autecological studies may help to illuminate the potential vulnerability of species, and draw preliminary conclusions about the priorities for insect conservation and research in a changing climate.  相似文献   

14.
The European flora is of global significance but many species are facing an ever increasing range of threats, especially the growing impacts of climate change. While various estimates have been made for the number of threatened plant species in Europe, an up-to-date European plant Red List does not presently exist. Target 8 of the Global Strategy for Plant Conservation (GSPC) calls for 60% of threatened plant species to be conserved in ex situ collections by 2010. In the absence of a European plant Red List, it is difficult to monitor progress at the regional level towards this target. To address this gap Botanic Gardens Conservation International (BGCI) has developed a consolidated list of European threatened species as a step towards a formal Red List. The database consists of national Red List data from 28 European countries and includes records for over 11,000 taxa. National Red List data were supplemented by information on the critically endangered plants of Europe provided by the Museum National d’Histoire Naturelle/European Topic Centre on Biological Diversity and the Conservatoire Botanique National de Brest. A list of regionally threatened species was extracted from the database and screened against BGCI’s database of plants in cultivation in botanic gardens (PlantSearch) and ENSCONET’s (European Native Seed Conservation Network) database of plants conserved in European seed banks. This analysis revealed that 42% of European threatened species are currently included in ex situ conservation programmes in Europe.  相似文献   

15.
Benavides  Eva  Breceda  Aurora  Anadón  José D. 《Plant Ecology》2021,222(1):29-44

The Cactaceae is considered one of the most threatened taxa in the world. However, the extent to which climate change could compromise the conservation status of this group has rarely been investigated. The present study advances this issue under three specific aims: (1) to assess the impact of climate change on the distribution of endemic cacti species in the Baja California Peninsula (n?=?40), (2) to study how the impact of climate change is distributed in this group according to the species’ conservation status, and (3) to analyze how these impacts are organized from a biogeographical and functional perspective. We addressed these objectives under three socioeconomic emission pathways (RCP 2.6, 4.5, and 8.5), and using two extreme migration scenarios: full climate change tracking and no migration. Altogether, all socioeconomic emission pathways under the two extreme migration scenarios show consistency regarding the identity of the species most vulnerable to climate change, and depict a discrepant future scenario that has, on one hand, species with large potential habitat gains/stability (winners); and on the other, species with large habitat reductions (losers). Our work indicates that winner species have a tropical affinity, globose growth, and includes most of the currently threatened species, whereas loser ones are in arid and Mediterranean systems and are mostly non-threatened. Thus, current and future threat factors do not overlap in the biogeographic and taxonomic space. That reveals a worrisome horizon at supraspecific levels in the study area, since the total number of threatened species in the future might largely increase.

  相似文献   

16.
Assessments of species vulnerability to climate change should increase the effectiveness of interventions in the current decline in biodiversity. Species vulnerability to climate change is a consequence of their sensitivity and adaptive capacity, in combination with their exposure to climate change. We apply a vulnerability assessment framework to 243 bird species inhabiting the tropical savannas of northern Australia. We build on previous vulnerability studies by including detailed data for variables relating to species sensitivity to change (relative abundance, clutch size, sensitivity to fire and distribution area), species adaptive capacity (movement behaviour and dietary breadth) and proportional changes predicted for their geographic range (i.e. exposure to climate change). These are integrated to provide a ranking of vulnerability. Our analysis found that birds of Australian tropical savannas cluster together with high sensitivity, with a few wide‐ranging increasing species with very low sensitivity. Australian tropical savanna birds have a range of adaptive capacities, and the impact of climate change on these species is predicted to be substantial. Two already endangered species are among the most vulnerable. Species largely restricted to Cape York Peninsula (a geographically distinct region) had the greatest overall vulnerability; these species were, in general, sensitive due to small distributions, sensitivity to fire frequency and had a lower capacity for dispersal. It will be important for the future of Australian tropical savanna birds to mitigate ecological threats and maintain extensive areas of suitable habitat to facilitate species dispersal.  相似文献   

17.
Abstract

A Red List of all 108 Pezizomycotina (Ascomycota) species recorded in Umbria Region (central Italy) is provided. According to the IUCN categories and criteria, 60.18% of the assessed species are classified as threatened, whereas 12.96% are Near Threatened (NT), 1.86% are Least Concerned (LC) and a noteworthy amount of 25% are Data Deficient (DD). As a consequence of the downlisting applied to the majority of the assessed taxa, according to the guidelines for application of IUCN red list criteria at Regional level, only 1.54% of the threatened species is Critically Endangered (CR), while 46.15% are Endangered (EN) and 52.31% are Vulnerable (VU). Given that the present work represents the first complete regional red list of Pezizomycotina in Italy, and that a national, as well as a European red list do not exist to date, it could be considered as a case study for other Italian Regions as well as for other European countries, aiming at the compilation of a national and European red list of this fungal group mostly overlooked in conservation strategies.  相似文献   

18.
王文婷  杨婷婷  金磊  蒋家民 《生物多样性》2021,29(12):1620-1026
气候变化对全球的物种多样性有深远影响, 尤其是对高山物种多样性。研究未来气候变化下物种的灭绝风险对生物多样性保护具有重要的意义。本文针对青藏高原的2种重要药用植物大花红景天(Rhodiola crenulata)和菊叶红景天(R. chrysanthemifolia), 利用气候生态位因子分析法研究了它们对气候变化的敏感性、暴露性和脆弱性, 讨论了2种“共享社会经济途径” (SSP2-45和SSP5-85)情景下的未来气候对这2个物种脆弱性的影响。同时计算了2种红景天的气候生态位的边缘性和特化性, 通过主成分分析法对其气候生态位进行了二维可视化, 并分析了它们的气候变化脆弱性与气候生态位之间的关系。结果表明, 未来气候变化情景下2种红景天在其分布区都显示出西部脆弱性高而东部脆弱性低的特征, 而脆弱性都表现为较低的横断山脉地区将成为其未来气候避难所。2种红景天在SSP5-85气候情景下的脆弱性高于SSP2-45, 资源和能源密集型社会经济途径(即SSP5-85)将会增大物种的灭绝风险。此外, 被《中国物种红色名录》评估为无危的菊叶红景天的气候变化脆弱性反而大于被评估为濒危的大花红景天。生态位因子分析结果表明大花红景天的生态位边缘性和特化性都低于菊叶红景天, 研究推断同地区不同物种的气候变化脆弱性主要由物种的气候生态位决定。  相似文献   

19.
The montane cloud forest (MCF) is one of the most threatened ecosystems, in spite of its high strategic value for sustainable development, the role it plays in the hydrological cycle maintenance, and as reservoir of endemic biodiversity. For Mexico, this forest is considered the most threatened terrestrial ecosystem at national level because of land-use changes and the effects of global climate change. To compare and assess the environmental vulnerability in the MCF we measured two physiological traits (stomatal conductance and leaf water potential), four climate variables (air temperature, photosynthetically active radiation, vapor pressure deficit, water availability) and the potential geographic distribution of eleven tree species from this forest. We evaluated stomatal conductance responses using the envelope function method (EFM), and after analyzing these responses we developed a vulnerability index that allowed us to compare the environmental vulnerability among species. We proposed the EFM as a useful tool to assess regional environmental vulnerability by comparing species. Our results showed differential species responses to all the studied variables; however, the vulnerability index allowed us to conclude that the most vulnerable species was Liquidambar styraciflua, and the least vulnerable Persea longipes. We also found that temperatures above 34 °C, and vapor pressure deficit above 2.9 kPa with relative humidity below 30% jeopardized the stomatal conductance performance of all species. We also found leaf water potential as the most influential variable over the studied species followed by vapor pressure deficit, showing that even in the MCF water is a determinant factor for species’ development.  相似文献   

20.
Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号