首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dogs with indwelling arterial and venous catheters ran on a treadmill on a 10% or on a 15% slope at 100 m/min. Glycerol turnover ([2-3H]-glycerol) and FFA turnover ([1-14C]palmitate) were measured simultaneously. Both turnovers were greatly increased by exercise. Similar increases were produced in resting dogs by norepinephrine infusions (0.5 mug/kg-min). At rest, as well as during exercise, there was a straight-line correlation between the ratio of disappearance of each substrate and their respective plasma concentrations. Over a wide range there was a straight-line correlation between the rate of production of FFA (RaFFA) and that of glycerol (RaGLY) at rest as well as during exercise. At any given RaFFA, RaGLY was higher in the running than in the resting dog. At rest the ratio of RaFFA/RaGLY was found to give the theoretical value of 3.0 only when RaFFA was 10-15 mumol/kg-min, below this the ratio was lower and above this it was higher. During exercise the ratio was lower than at rest and at heavier load lower than at lighter work. The results suggest that in vivo a combination of partial and complete lipolysis as well as reesterification occurs. The glucose equivalent of the glycerol turnover (if 100% converted) represents (under the given experimental conditions) 14-18% of the hepatic glucose output on the 15% slope and 20-25% of it on the 10% slope.  相似文献   

2.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

3.
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.  相似文献   

4.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

5.
We evaluated the hypothesis that fatty acid reesterification would be increased during rest and exercise in the midluteal menstrual cycle phase and during oral contraceptive use, when ovarian hormone concentrations are high, compared with the early follicular phase. Subjects were eight moderately active, weight-stable, eumenorrheic women (24.8 +/- 1.2 yr, peak oxygen consumption = 42.0 +/- 2.3 ml.kg(-1).min(-1)) who had not taken oral contraceptives for at least 6 mo. Plasma free fatty acid (FFA) kinetics were assessed in the 3-h postprandial state by continuous infusion of [1-(13)C]palmitate and [1,1,2,3,3-(2)H]glycerol during 90 min of rest and 60 min of exercise at 45% and 65% peak oxygen consumption in the early follicular and midluteal menstrual cycle phases and during the inactive- and high-dose phases following 4 mo of oral contraceptive use. Plasma FFA rates of appearance, disappearance, and oxidation increased significantly from rest to exercise with no differences noted between menstrual cycle or oral contraceptive phases or exercise intensities. Compared with either menstrual cycle phase, oral contraceptive use resulted in an increase in plasma-derived fatty acid reesterification and a decrease in the proportion of plasma FFA rate of disappearance that was oxidized at rest and during exercise. Endogenous and exogenous synthetic ovarian hormones do not exert a measurable influence on plasma FFA turnover or oxidation at rest or during moderate-intensity exercise in the 3-h postprandial state when carbohydrate use predominates. The increase in whole body lipolytic rate during exercise noted previously with oral contraceptive use is not matched by an increase in fatty acid oxidation and results in an increase in reesterification. Synthetic ovarian hormones contained in oral contraceptives increase lipolytic rate, but fatty acid oxidation during exercise is determined by exercise intensity and its metabolic and endocrine consequences.  相似文献   

6.
Recognition of the strength of nonhuman primate models in investigating metabolic disorders has resulted in an expanded need for in vivo research techniques. We studied adipose metabolism in 10 baboons (13.0 ± 4.2 years old, 29.5 ± 5.5 kg). Part 1 evaluated the effect of different sedatives on the rate of appearance of plasma free fatty acids (RaFFA), assessed using 13C4-labeled palmitate infusion (7 µmol/kg/min). Animals, were studied with no sedation, with complete isoflurane sedation, and with minimal midazolam infusion (0.04 mg/kg/h), with the last scheme allowing for the most consistent values and animals that were visually more calm. In Part 2, RaFFA and RaGlycerol (D5-glycerol, 5 mg/kg lean body mass/h) were measured. From midnight to 0300, flux fell and came to a steady state between 0500 and 0700 h (RaFFA, 39.4 ± 29.8 μmol/kg fat mass/min; and RaGlycerol, 26.9 ± 7.3 μmol/kg/min). The RaFFA-to-RaGlycerol ratio was 1.5 ± 0.8 (49% reesterification). The decline in turnover throughout the night reflects natural circadian processes and was mirrored by reductions in FFA and glycerol to 0.62 and ± 0.14 and 0.16 and ± 0.03 mmol/l, respectively. The concurrent changes in both FFA and glycerol kinetics indicate physiologic validity of the method. These techniques will support needed research to determine mechanisms by which treatments act upon the adipocyte in vivo.  相似文献   

7.
One of the strategies to prevent insulin resistance is to reduce circulating free fatty acids (FFA). The aim of this study is to assess the effect of an oral lactulose load on fatty acid metabolism in overweight subjects. Eight overweight subjects received a primed constant intravenous infusion of [1-(13)C]acetate and of [1,1,2,3,3-(2)H(5)]glycerol for 9 h. After 3 h of tracer infusion, patients ingested 30 g lactulose, or saline solution. Arterialized blood samples were collected every 20 min. Basal plasma concentrations of acetate were similar before and between oral treatments as well as glycerol and FFA concentrations. Plasma acetate turnover was 11.4 +/- 2.4 vs. 10.7 +/- 1.4 micromol.kg(-1).min(-1) [not significant (NS)], and plasma glycerol turnover was 3.8 +/- 0.4 vs. 4.8 +/- 1.9 micromol.kg(-1).min(-1) (NS). After lactulose ingestion, acetate concentration increased twofold and then decreased to baseline. Acetate turnover rate increased to 15.5 +/- 2.2 micromol.kg(-1).min(-1) after lactulose treatment, whereas it was unchanged after saline treatment (10.3 +/- 2.2 micromol.kg(-1).min(-1), P < or = 0.0001). In contrast, FFA concentrations decreased significantly after lactulose ingestion and then increased slowly. Glycerol turnover decreased after lactulose ingestion compared with saline, 2.8 +/- 0.4 vs. 3.5 +/- 0.3 micromol.kg(-1).min(-1) (P < or = 0.05). A significant negative correlation was found between glycerol and acetate turnover after lactulose treatments (r = -0.78, P < or = 0.02). These results showed in overweight subjects a short-term decrease in FFA level and glycerol turnover after lactulose ingestion related to a decrease of lipolysis in close relationship with an increase of acetate production.  相似文献   

8.
The putative role played by insulin sensitizers in modulating adipose tissue lipolysis in the fasting state was evaluated in obese conscious Zucker rats treated with troglitazone or beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) and compared with nontreated lean and obese animals. The rates of appearance (R(a)) of glycerol and free fatty acid (FFA), primary intra-adipose reesterification, and secondary reuptake of plasma FFA in adipose fat were measured using constant infusion of stable isotope-labeled [(2)H(5)]glycerol, [2,2-(2)H(2)]palmitate, and radioactive [(3)H]palmitate. The overall lipolytic flux (R(a) glycerol) was increased 1.7- and 1.4-fold in obese animals treated with troglitazone or MEDICA 16, respectively, resulting in increased FFA export (R(a) FFA) in the troglitazone-treated rats. Primary intra-adipose reesterification of lipolysis-derived fatty acids was enhanced twofold by insulin sensitizers, whereas reesterification of plasma fatty acids was unaffected by either treatment. Despite the unchanged R(a) FFA in MEDICA 16 or the increased R(a) FFA induced by troglitazone, very low density lipoprotein production rates were robustly curtailed. Total adipose tissue reesterification, used as an estimate of glucose conversion to glyceride-glycerol, was increased 1.9-fold by treatment with the insulin sensitizers. Our results indicate that, in the fasting state, insulin sensitizers induce, in vivo, a significant activation rather than suppression of adipose tissue lipolysis together with stimulation of glucose conversion to glyceride-glycerol.  相似文献   

9.
Inhibition of glucose uptake by acetoacetate and relief of this inhibition by insulin found previously in slices of rat mammary gland [Williamson, McKeown & Ilic (1975) Biochem. J. 150. 145-152] was confirmed in acini, which represent a more homogeneous population of cells. Glycerol (1mM) behaved like insulin (50 minuits/ml) in its ability to relieve the inhibition of glucose (5 mM) utilization caused by acetoacetate (2 mM) in acini. Both glycerol and insulin reversed the increase in [citrate] and the decrease in [glycerol 3-phosphate] and the [lactate]/[pyruvate] ratio in the presence of acetoacetate. Lipogenesis from 3H2O, [3-14C] acetoacetate, [1-14C]- and [6-14C]-glucose was stimulated, whereas 14CO2 formation from [3-14C]acetoacetate was decreased. Neither insulin nor glycerol relieved the acetoacetate inhibition of glucose uptake when lipogenesis was inhibited by 5-(tetradecyloxy)-2-furoic acid. From measurements of [3-14C]acetoacetate incorporation into lipid in the various situations it is suggested that a cytosolic pathway for acetoacetate utilization may exist in rat mammary gland. In the absence of acetoacetate, glycerol inhibited glucose utilization by 60% and increased both [glycerol 3-phosphate] and the [lactate/[pyruvate] ratio. Possible ways in which glycerol may mimic the effects of insulin are discussed.  相似文献   

10.
Dogs with indwelling catheters in the jugular vein and in the carotid artery ran on the treadmill (slope: 15%, speed: 133 m/min). Lactate turnover and glucose turnover were measured using [U-14C]lactate and [3-3H]glucose as tracers, according to the primed constant-rate infusion method. In addition, the participation of plasma glucose in lactate production (Ra-L) was measured with [U-14C]glucose. Propranolol was given either (A) before exercise (250 micrograms/kg, iv) or (B) in form of a primed infusion administered to the dog running at a steady rate. Measurements of plasma propranolol concentration showed that in type A experiments plasma propranolol fell in 45 min below the lower limit of the complete beta-blockade. In the first 15 min of work Ra-L rose rapidly; then it fell below that of the control (exercise) values. During steady exercise, the elevated Ra-L was decreased by propranolol infusion close to resting values. beta-Blockade doubled the response of glucose production, utilization, and metabolic clearance rate to exercise. In exercising dogs approximately 40-50% of Ra-L arises from plasma glucose. This value was increased by the blockade to 85-90%. It is concluded that glycogenolysis in the working muscle has a dual control: 1) an intracellular control operating at the beginning of exercise, and 2) a hormonal control involving epinephrine and the beta-adrenergic receptors.  相似文献   

11.
An emerging technique used for the study of metabolic regulation is the elevation of lactate concentration with a sodium-lactate infusion, the lactate clamp (LC). However, hematological and acid-base properties affected by the infusion of hypertonic solutions containing the osmotically active strong ions sodium (Na(+)) and lactate (Lac(-)) are a concern for clinical and research applications of LC. In the present study, we characterized the hematological and plasma acid-base changes during rest and prolonged, light- to moderate-intensity (55% Vo(2 peak)) exercise with and without LC. During the control (Con) trial, subjects were administered an isotonic, isovolumetric saline infusion. During LC, plasma lactate concentration ([Lac(-)]) was elevated to 4 meq/l during rest and to 4-7 meq/l during exercise. During LC at rest, there were rapid and transient changes in plasma, erythrocyte, and blood volumes. LC resulted in decreased plasma [H(+)] (from 39.6 to 29.6 neq/l) at the end of exercise while plasma [HCO(3)(-)] increased from 26 to 32.9 meq/l. Increased plasma strong ion difference [SID], due to increased [Na(+)], was the primary contributor to decreased [H(+)] and increased [HCO(3)(-)]. A decrease in plasma total weak acid concentration also contributed to these changes, whereas Pco(2) contributed little. The infusion of hypertonic LC caused only minor volume, acid-base, and CO(2) storage responses. We conclude that an LC infusion is appropriate for studies of metabolic regulation.  相似文献   

12.
The increased energy required for acute moderate exercise by skeletal muscle (SkM) is derived equally from enhanced fatty acid (FA) oxidation and glucose oxidation. Availability of FA also influences contracting SkM metabolic responses. Whole body glucose turnover and SkM glucose metabolic responses were determined in paired dog studies during 1) a 30-min moderate exercise (maximal oxygen consumption of approximately 60%) test vs. a 60-min low-dose 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion, 2) a 150-min AICAR infusion vs. modest elevation of FA induced by a 150-min combined intralipid-heparin (IL/hep) infusion, and 3) an acute exercise test performed with vs. without IL/hep. The exercise responses differed from those observed with AICAR: plasma FA and glycerol rose sharply with exercise, whereas FA fell and glycerol was unchanged with AICAR; glucose turnover and glycolytic flux doubled with exercise but rose only by 50% with AICAR; SkM glucose-6-phosphate rose and glycogen content decreased with exercise, whereas no changes occurred with AICAR. The metabolic responses to AICAR vs. IL/hep differed: glycolytic flux was stimulated by AICAR but suppressed by IL/hep, and no changes in glucose turnover occurred with IL/hep. Glucose turnover responses to exercise were similar in the IL/hep and non-IL/hep, but SkM lactate and glycogen concentrations rose with IL/hep vs. that shown with exercise alone. In conclusion, the metabolic responses to acute exercise are not mimicked by a single dose of AICAR or altered by short-term enhancement of fatty acid supply.  相似文献   

13.
Catheters were implanted in 18 gilts at 99 days of pregnancy to study the effects of meal intake on uterine and umbilical uptake of energetic substrates in the conscious pig. Blood samples were withdrawn at 105 days of pregnancy from 10 min before and up to 90 min after feeding of a 2.5-kg meal. Plasma glucose was 2.2 to 2.5 times lower and blood lactate 2 to 3 times higher in the foetus than in the sow. Glucose and lactate increased after the meal. Their umbilical uptake amounted to 0.32 and 0.26 mmol x L(-1), respectively. Fructose was found in large amounts in foetal plasma (4.3 mmol x L(-1)), but it did not seem to be metabolised by the foetus. Meal intake decreased plasma levels of FFA and glycerol in the sows, whereas they increased in the foetuses. A small FFA and glycerol umbilical uptake was recorded (14 and 6 micromol L(-1), respectively). Most features of the materno-foetal exchanges in the porcine species resemble those of other species, especially ruminants.  相似文献   

14.
Concentrations of asymmetrical dimethylarginine (ADMA) and free fatty acids (FFAs) are elevated in insulin resistance which is associated with impaired vascular function. We hypothesized that FFAs could alter vascular tone by affecting ADMA concentrations. Plasma FFA levels were increased in seventeen healthy male volunteers by Intralipid/heparin infusion; hemodynamic and biochemical parameters were measured after 90 minutes. Plasma collected before and during Intralipid/heparin or equivalent synthetic FFAs was incubated with human umbilical vein endothelial cells (HUVECs) in vitro. Intralipid/heparin infusion resulted in an approximately seven-fold increase in plasma FFA levels to 1861 +/- 139 micromol/l, which was paralleled by increased systemic blood pressure and forearm blood flow. Intralipid/heparin did not affect ADMA (baseline mean 0.59 [95 % confidence interval [CI]: 0.54; 0.64] and 0.56 [CI: 0.51; 0.59] after 90 minutes), but slightly decreased SDMA (from 0.76, [CI: 0.70; 0.83] to 0.71 [CI: 0.64; 0.74], p < 0.05), and had no effect on ADMA/SDMA ratio. There was no correlation between ADMA and FFA concentrations or forearm blood flow. Incubation of HUVECs with FFA-rich plasma or synthetic FFAs induced an ADMA release after 24 hours, but not after 90 minutes. Acutely increased FFA levels caused hemodynamic effects but did not affect ADMA. Prolonged elevation of FFA levels might influence vascular function by increasing ADMA levels.  相似文献   

15.
Six men were studied during exercise to exhaustion on a cycle ergometer at 73% of VO2max following ingestion of glycerol, glucose or placebo. Five of the subjects exercised for longer on the glucose trial compared to the placebo trial (p less than 0.1; 108.8 vs 95.9 min). Exercise time to exhaustion on the glucose trial was longer (p less than 0.01) than on the glycerol trial (86.0 min). No difference in performance was found between the glycerol and placebo trials. The ingestion of glucose (lg X kg-1 body weight) 45 min before exercise produced a 50% rise in blood glucose and a 3-fold rise in plasma insulin at zero min of exercise. Total carbohydrate oxidation was increased by 26% compared to placebo and none of the subjects exhibited a fall in blood glucose below 4 mmol X 1-1 during the exercise. The ingestion of glycerol (lg X kg-1 body weight) 45 min before exercise produced a 340-fold increase in blood glycerol concentration at zero min of exercise, but did not affect resting blood glucose or plasma insulin levels; blood glucose levels were up to 14% higher (p less than 0.05) in the later stages of exercise and at exhaustion compared to the placebo or glucose trials. Both glycerol and glucose feedings lowered the magnitude of the rise in plasma FFA during exercise compared to placebo. Levels of blood lactate and alanine during exercise were not different on the 3 dietary treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Related to hepatic autoregulation we evaluated hypotheses that 1) glucose production would be altered as a result of a glycerol load, 2) decreased glucose recycling rate (Rr) would result from increased glycerol uptake, and 3) the absolute rate of gluconeogenesis (GNG) from glycerol would be positively correlated to glycerol rate of disappearance (R(d)) during a glycerol load. For these purposes, glucose and glycerol kinetics were determined in eight men during rest and during 90 min of leg cycle ergometry at 45 and 65% of peak O2 consumption (.VO2 (peak)). Trials were conducted after an overnight fast, with exercise commencing 12 h after the last meal. Subjects received a continuous infusion of [6,6-(2)H(2)]glucose, [1-(13)C]glucose, and [1,1,2,3,3-(2)H(5)]glycerol without (CON) or with an additional 1,000 mg (rest: 20 mg/min; exercise: 40 mg/min) of [2-(13)C]- or unlabeled glycerol added to the infusate (GLY). Infusion of glycerol dampened glucose Rr, calculated as the difference between [6,6-(2)H(2)]- and [1-(13)C]glucose rates of appearance (R(a)), at rest [0.35 +/- 0.12 (CON) vs. 0.12 +/- 0.10 mg. kg(-1). min(-1) (GLY), P < 0.05] and during exercise at both intensities [45%: 0.63 +/- 0.14 (CON) vs. 0.04 +/- 0.12 (GLY); 65%: 0.73 +/- 0.14 (CON) vs. 0.04 +/- 0.17 mg. kg(-1). min(-1) (GLY), P < 0.05]. Glucose R(a) and oxidation were not affected by glycerol infusion at rest or during exercise. Throughout rest and both exercise intensities, glycerol R(d) was greater in GLY vs. CON conditions (rest: 0.30 +/- 0.04 vs. 0.58 +/- 0.04; 45%: 0.57 +/- 0.07 vs. 1.19 +/- 0.04; 65%: 0.73 +/- 0.06 vs. 1.27 +/- 0.05 mg. kg(-1). min(-1), CON vs. GLY, respectively). Differences in glycerol R(d) (DeltaR(d)) between protocols equaled the unlabeled glycerol infusion rate and correlated with plasma glycerol concentration (r = 0.97). We conclude that infusion of a glycerol load during rest and exercise at 45 and 65% of .VO2(peak) 1) does not affect glucose R(a) or R(d), 2) blocks glucose Rr, 3) increases whole body glycerol R(d) in a dose-dependent manner, and 4) results in gluconeogenic rates from glycerol equivalent to CON glucose recycling rates.  相似文献   

17.
Nine bodybuilders performed heavy-resistance exercise activating the quadriceps femoris muscle. Intermittent 30-s exhaustive exercise bouts comprising 6-12 repetitions were interspersed with 60-s periods for 30 min. Venous blood samples were taken repeatedly during and after exercise for analyses of plasma free fatty acid (FFA) and glycerol concentration. Muscle biopsies were obtained from the vastus lateralis muscle before and after exercise and assayed for glycogen, glycerol-3-phosphate, lactate and triglyceride (TG) content. The activities of citrate synthase (CS), lactate dehydrogenase, hexokinase (HK), myokinase, creatine kinase and 3-hydroxyacyl-CoA dehydrogenase (HAD), were analysed. Histochemical staining procedures were used to assess fibre type composition, fibre area and capillary density. TG content before and after exercise averaged (SD) 23.9 (13.3) and 16.7 (6.4) mmol kg-1 dry wt. The basal triglyceride content varied sixfold among individuals and the higher the levels the greater was the change during exercise. The glycogen content decreased (P less than 0.001) from 690 (82) to 495 (95) mmol kg-1 dry wt. and lactate and glycerol-3-phosphate increased (P less than 0.001) to 79.5 (5.5) and 14.5 (7.3) mmol kg-1 dry wt., respectively, after exercise. The HK and HAD/CS content respectively correlated with glycogen or TG content at rest and with changes in these metabolites during exercise. FFA and glycerol concentrations increased slightly (P less than 0.001) during exercise. Lipolysis may, therefore, provide energy during heavy-resistance exercise of relatively short duration. Also, storage and utilization of intramuscular substrates appear to be influenced by the metabolic profile of muscle.  相似文献   

18.
Exercise alters the distribution of ammonia and lactate in blood   总被引:2,自引:0,他引:2  
Six subjects (3 males, 3 females) worked for 4 min on a cycle ergometer at 115% of peak O2 uptake (VO2). Venous samples drawn before, directly after, and 15 min after exercise were analyzed for ammonia (NH3) and lactate concentrations of plasma, whole blood, and erythrocytes (RBCs) to examine the effect of exercise on blood NH3 and lactate distribution. Exercise increased (P less than 0.05) the [NH3] of plasma and RBCs, with the larger (P less than 0.05) change in plasma (1.8- vs. 0.7-fold). This reduced (P less than 0.05) the RBC-to-plasma [NH3] ratio of 2.4 at rest to 1.3. The plasma-to-RBC [lactate] gradient (P less than 0.05) at rest (0.5 mmol/l) increased (P less than 0.05) 16-fold immediately after exercise (8.7 mmol/l), reflecting the greater increase (P less than 0.05) in plasma than RBCs [lactate] (15.5 vs. 7.5 mmol/l). [Lactate] and [NH3] did not decrease (P greater than 0.05) immediately after to 15 min after exercise. Plasma and whole blood [NH3] or [lactate] were correlated (r greater than 0.93, P less than 0.01) at all sample times, but the slopes of the relations for [NH3] (immediately after vs. 15 min after exercise) or for [lactate] (before and immediately after vs. 15 min after exercise) differed (P less than 0.05). The results indicate that supramaximal exercise alters the distribution of NH3 and lactate between plasma and RBC, thus changing the relations between plasma and whole-blood concentrations of these metabolites. The alteration of NH3 distribution may reflect changes in the pH gradient between plasma and RBCs.  相似文献   

19.
It has recently been demonstrated that, compared to normal conditions, ventilation (VE) was increased during exercise after glycogen depletion, in spite of a marked increase in plasma pH (pHP). It was further demonstrated that VE in patients with McArdle's syndrome was reduced when substrate availability was improved. In the present experiments, six endurance trained men performed two successive cyclo-ergometric incremental exercise tests (tests A, B) after normal nutrition (N) and after a fatty meal in conjunction with a sodium bicarbonate (NaHCO3) solution (FSB) or without NaHCO3 (F), and the relationship between VE, plasma potassium concentration ([K+]P), and pHP was checked. Plasma free fatty acid concentration ([FFA]P) was markedly increased in the F and FSB trials (P < 0.001). In FSB pHP was significantly increased, compared to N and F (P < 0.001). In all the B tests, pHP increased during moderate and intense exercise and in FSB, remained alkalotic even during maximal exercise intensity. In contrast, VE and [K+]P changes were almost equal in all the trials and in tests A and B. It was found that exercise-induced changes of VE and [K+]P in the present experiments were not markedly affected by [FFA]P or pHP values and that these changes also occurred independently of changes in pHP or plasma bicarbonate concentration. The often used glycogen depletion strategy may have slightly increased VE but apparently did not overcompensate for a possible decrease in VE due to increased pHP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study determined the role of intramuscular triglyceride (IMTG) and adipose lipolysis in the elevated fat oxidation during exercise caused by a high-fat diet. In four separate trials, six endurance-trained cyclists exercised at 50% peak O2 consumption for 1 h after a two-day control diet (22% fat, CON) or an isocaloric high-fat diet (60% fat, HF) with or without the ingestion of acipimox, an adipose lipolysis inhibitor, before exercise. During exercise, HF elevated fat oxidation by 72% and whole body lipolysis [i.e., the appearance rate of glycerol in plasma (Ra glycerol)] by 79% compared with CON (P < 0.05), and this was associated with a 36% increase (P < 0.05) in preexercise IMTG concentration. Although acipimox lowered plasma free fatty acid (FFA) availability, HF still increased fat oxidation and Ra glycerol to the same magnitude above control as the increase caused by HF without acipimox (i.e., both increased fat oxidation 13-14 micromol.kg(-1).min(-1)). In conclusion, the marked increase in fat oxidation after a HF diet is associated with elevated IMTG concentration and whole body lipolysis and does not require increased adipose tissue lipolysis and plasma FFA concentration during exercise. This suggests that altered substrate storage in skeletal muscle is responsible for increased fat oxidation during exercise after 2 days of an HF diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号