首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fyn is a Src family tyrosine kinase expressed abundantly in neurons and believed to have specific functions in the brain. To understand the function of Fyn tyrosine kinase, we attempted to identify Fyn Src homology 2 (SH2) domain-binding proteins from a Nonidet P-40-insoluble fraction of the mouse brain. beta-Adducin, an actin filament-associated cytoskeletal protein, was isolated by two-dimensional gel electrophoresis and identified by tandem mass spectrometry. beta-Adducin was tyrosine phosphorylated by coexpression with wild type but not with a kinase-negative form of Fyn in COS-7 cells. Cell staining analysis showed that coexpression of beta-adducin with Fyn induced translocation of beta-adducin from the cytoplasm to the periphery of the cells where it was colocalized with actin filaments and Fyn. These findings suggest that tyrosine-phosphorylated beta-adducin associates with the SH2 domain of Fyn and colocalizes under plasma membranes.  相似文献   

2.
Pleiotrophin (PTN the protein, Ptn the gene) signals downstream targets through inactivation of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, disrupting the balanced activity of RPTPbeta/zeta and the activity of a constitutively active tyrosine kinase. As a consequence of the inactivation of RPTPbeta/zeta, PTN stimulates a sharp increase in the levels of tyrosine phosphorylation of the substrates of RPTPbeta/zeta in PTN-stimulated cells. We now report that the Src family member Fyn interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system. We further demonstrate that Fyn is a substrate of RPTPbeta/zeta, and that tyrosine phosphorylation of Fyn is sharply increased in PTN-stimulated cells. In previous studies, we demonstrated that beta-catenin and beta-adducin are targets of the PTN/RPTPbeta/zeta-signaling pathway and defined the mechanisms through which tyrosine phosphorylation of beta-catenin and beta-adducin disrupts cytoskeletal protein complexes. We conclude that Fyn is a downstream target of the PTN/RPTPbeta/zeta-signaling pathway and suggest that PTN coordinately regulates tyrosine phosphorylation of beta-catenin, beta-adducin, and Fyn through the PTN/RPTPbeta/zeta-signaling pathway and that together Fyn, beta-adducin, and beta-catenin may be effectors of the previously described PTN-stimulated disruption of cytoskeletal stability, increased cell plasticity, and loss of cell-cell adhesion that are characteristic of PTN-stimulated cells and a feature of many human malignant cells in which mutations have established constitutive expression of the Ptn gene.  相似文献   

3.
There are several lines of evidence that the podocyte slit diaphragm (SD), which serves as a structural framework for the filtration barrier in kidney glomerulus, also plays an essential role as a signaling platform. Several SD components including nephrin and TRPC6 are known to be phosphorylated by a Src family tyrosine kinase (SFK), Fyn. Here we have characterized Neph1, another SD component, as a novel substrate of SFK. Fyn interacts with and phosphorylates the cytoplasmic domain of Neph1 in vitro and in intact cells. Peptide mass fingerprinting and site-directed mutagenesis identified several tyrosine phosphorylation sites. In pull-down assays using rat glomerular lysates, Neph1 but not nephrin specifically binds to adaptor protein Grb2 and tyrosine kinase Csk in a phosphorylation-dependent manner. Both tyrosine 637 and 638 of Neph1 are crucial for Neph1-Grb2 binding. Phosphorylation of tyrosine 637 is significantly up-regulated in in vivo models of podocyte injury. Furthermore, Neph1 attenuates ERK activation elicited by Fyn, and this inhibitory effect requires the intact binding motif for the Grb2 SH2 domain. Our results shown here demonstrate that Neph1 is a novel in vivo substrate of SFK and suggest that Neph1 modulates ERK signaling through phosphorylation-dependent interaction with Grb2. Thus, SFK orchestrates a wide spectrum of protein-protein interactions and intracellular signaling networks at SD through tyrosine phosphorylation.  相似文献   

4.
A family of protein tyrosine phosphatases enriched within the central nervous system called striatal enriched phosphatase (STEP) has been implicated in the regulation of the N-methyl-d-aspartate receptor. STEP(61), a membrane-associated isoform located in the postsynaptic densities (PSDs) of striatal neurons, contains two transmembrane domains, two proline-rich domains, and a kinase-interacting motif. This study demonstrates that STEP(61) associates with Fyn, a member of the Src family kinases that is also enriched in PSDs. By using human embryonic kidney 293 cells for co-transfection, we determined that a substrate-trapping variant (STEP(61) CS) binds to Fyn but not to other members of the Src family present in PSDs. In a complementary experiment, myc-tagged Fyn immunoprecipitates STEP(61) CS. STEP(61) binds to Fyn through one of its proline-rich domains and the kinase-interacting motif domain, whereas Fyn binds to STEP(61) through its Src homology 2 domain and the unique N-terminal domain. STEP(61) CS pulls down Fyn when the Tyr(420) site is phosphorylated. In vitro, wild-type STEP(61) dephosphorylates Fyn at Tyr(420) but not at Tyr(531). These results suggest that STEP regulates the activity of Fyn by specifically dephosphorylating the regulatory Tyr(420) and may be one mechanism by which Fyn activity is decreased within PSDs.  相似文献   

5.
Pleiotrophin (PTN the protein, Ptn the gene) signals through a unique mechanism; it inactivates the tyrosine phosphatase activity of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, and increases tyrosine phosphorylation of the substrates of RPTPbeta/zeta through the continued activity of a yet to be described protein tyrosine kinase(s) in PTN-stimulated cells. We have now found that the cytoskeletal protein beta-adducin interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system, that beta-adducin is a substrate of RPTPbeta/zeta, that beta-adducin is phosphorylated in tyrosine in cells not stimulated by PTN, and that tyrosine phosphorylation of beta-adducin is sharply increased in PTN-stimulated cells, suggesting that beta-adducin is a downstream target of and regulated by the PTN/RPTPbeta/zeta signaling pathway. beta-Catenin was the first downstream target of the PTN/RPTPbeta/zeta signaling pathway to be identified; these data thus also suggest that PTN coordinately regulates steady state levels of tyrosine phosphorylation of the important cytoskeletal proteins beta-adducin and beta-catenin and, through PTN-stimulated tyrosine phosphorylation, beta-adducin may contribute to the disruption of cytoskeletal structure, increased plasticity, and loss of homophilic cell-cell adhesion that are the consequences of PTN stimulation of cells and a characteristic feature of different malignant cells with mutations that activate constitutive expression of the endogenous Ptn gene.  相似文献   

6.
Leukocyte common antigen-related molecule (LAR) is a receptor-like protein tyrosine phosphatase (PTPase) with two PTPase domains. In the present study, we detected the expression of LAR in the brain, kidney, and thymus of mice using anti-LAR PTPase domain subunit monoclonal antibody (mAb) YU1. In the thymus, LAR was expressed on CD4(-)CD8(-) and CD4(-)CD8(low) thymocytes. The development of thymocytes in CD45 knockout mice is blocked partially in the maturation of CD4(-)CD8(-) to CD4(+)CD8(+). We postulated that LAR regulates Lck and Fyn in the immature thymocytes. Transfection of wild-type LAR activated extracellular signal-regulated kinase signal transduction pathway in CD45-deficient Jurkat cells stimulated with anti-CD3 mAb. LAR mutants, with Cys to Ser mutation in the catalytic center of PTPase D1, bound to tyrosine-phosphorylated Lck and Fyn, and LAR PTPase domain 2 was tyrosine phosphorylated by Fyn tyrosine kinase. The phosphorylated LAR was associated with Fyn Src homology 2 domain. Moreover, LAR dephosphorylated phosphorylated tyrosine residues in both the COOH terminus and kinase domain of Fyn in vitro. Our results indicate that Lck and Fyn would be substrates of LAR in immature thymocytes and that each LAR PTPase domain plays distinct functional roles in phosphorylation and dephosphorylation.  相似文献   

7.
c-Abl kinase regulates the protein binding activity of c-Crk.   总被引:26,自引:1,他引:25       下载免费PDF全文
S M Feller  B Knudsen    H Hanafusa 《The EMBO journal》1994,13(10):2341-2351
c-Crk is a proto-oncogene product composed largely of Src homology (SH) 2 and 3 domains. We have identified a kinase activity, which binds to the first Crk SH3 domain and phosphorylates c-Crk on tyrosine 221 (Y221), as c-Abl. c-Abl has a strong preference for c-Crk, when compared with common tyrosine kinase substrates. The phosphorylation of c-Crk Y221 creates a binding site for the Crk SH2 domain. Bacterially expressed c-Crk protein lacks phosphorylation on Y221 and can bind specifically to several proteins, while mammalian c-Crk, which is phosphorylated on tyrosine, remains uncomplexed. The protein binding activity of c-Crk is therefore likely regulated by a mechanism similar to that of the Src family kinases. v-Crk is truncated before c-Crk Y221 and forms constitutive complexes with c-Abl and other proteins. Our results suggest that c-Abl regulates c-Crk function and that it could be involved in v-Crk transformation.  相似文献   

8.
9.
We have adopted nanoflow electrospray ionization mass spectrometry (ESI-MS) and isothermal titration calorimetry (ITC) to probe the mechanism of peptide recognition by the SH2 domain from the Src family tyrosine kinase protein, Fyn. This domain is involved in the mediation of intracellular signal transduction pathways by interaction with proteins containing phosphorylated tyrosine (Y*) residues. The binding of tyrosyl phosphopeptides can mimic these interactions. Specificity in these interactions has been attributed to the interaction of the Y* and residues proximal and C-terminal to it. Previous studies have established that for specific binding with Fyn, the recognition sequence consists of pTyr-Glu-Glu-Ile. The specific interactions involve the binding of Y* with the ionic, and the Y* + 3 Ile residue with the hydrophobic binding pockets on the surface of the Fyn SH2 domain. In this work, a variation in the Y* + 3 residue of this high-affinity sequence was observed to result in changes in the relative binding affinities as determined in solution (ITC) and in the gas phase (nanoflow ESI-MS). X-ray analysis shows that a feature of the Src family SH2 domains is the involvement of water molecules in the peptide binding site. Under the nanoflow ESI conditions, water molecules appear to be maintained in the Fyn SH2-ligand complex. Compelling evidence for these molecules being incorporated in the SH2-peptide interface is provided by the prevalence of the peaks assigned to water-bound over the water-free complex at high-energy conditions. Thus, the stability of water protein-ligand complex appears to be intimately linked to the presence of water.  相似文献   

10.
The Src homology 3 (SH3) domain of Fyn binds to a conserved PXXP motif on microtubule-associated protein-2. Co-transfections into COS7 cells and in vitro kinase assays performed with Fyn and wild-type, or mutant MAP-2c, determined that Fyn phosphorylated MAP-2c on tyrosine 67. The phosphorylation generated a consensus sequence for the binding of the SH2 domain of Grb2 (pYSN). Pull-down assays with SH2-Grb2 from human fetal brain homogenates, and co-immunoprecipitation of Grb2 and MAP-2 confirmed the interaction in vivo, and demonstrated that MAP-2c is tyrosine-phosphorylated in human fetal brain. Filter overlay assays confirmed that the SH2 domain of Grb2 binds to human MAP-2c following incubation with active Fyn. Enzyme-linked immunosorbent assays confirmed the interaction between the SH2 domain of Grb2 and a tyrosine-phosphorylated MAP-2 peptide spanning the pY(67)SN motif. Thus, MAP-2c can directly recruit multiple signaling proteins important for central nervous system development.  相似文献   

11.
The B cell antigen receptor complex (BCR) is composed of membrane Ig and heterodimers of Ig-alpha and Ig-beta/gamma. Recent findings indicate that Ig-alpha associates with Src-family kinases, including Fyn and Lyn, via an approximately 26 amino acid motif termed ARH1. Studies reported here (i) define two mechanisms whereby this motif binds Fyn and (ii) reveal an important functional consequence of binding, i.e. kinase activation. Mutational analysis indicates that specific low-affinity binding is determined by a short sequence, -DCSM-, in the motif and is not dependent on motif tyrosine residues. In contrast, the doubly tyrosine phosphorylated motif binds independently of DCSM and with high affinity. Importantly, this binding leads to Fyn activation. Taken together with studies which map low-affinity binding of Fyn or Lyn to the kinase's N-terminal unique region and high-affinity binding to the kinase's SH2 domain, these results suggest a mechanism of BCR activation in which the non-phosphorylated resting receptor is associated with Src-family kinases and, upon stimulation, tyrosine phosphorylation of Ig-alpha leads to reorientation and activation of receptor-associated kinases.  相似文献   

12.
Huang R  Fang P  Kay BK 《New biotechnology》2012,29(5):526-533
Fyn is a nonreceptor protein tyrosine kinase that belongs to a highly conserved kinase family, Src family kinases. Fyn plays an important role in inflammatory processes and neuronal functions. To generate a synthetic affinity reagent that can be used to probe Fyn, a phage-display library of fibronectin type III monobodies was affinity selected with the Src Homology 3 (SH3) domain of Fyn and three binders were isolated. One of the three binders, G9, is specific in binding to the SH3 domain of Fyn, but not to the other members of the Src family (i.e. Blk, Fgr, Hck, Lck, Lyn, Src and Yes), even though they share 51-81% amino acid identity. The other two bind principally to the Fyn SH3 domain, with some cross-reactivity to the Yes SH3 domain. The G9 binder has a dissociation constant of 166±6nM, as measured by isothermal titration calorimetry, and binds only to the Fyn SH3 domain out of 150 human SH3 domains examined in an array. Interestingly, although the G9 monobody lacks proline in its randomized BC and FG loops, it binds at the same site on the SH3 domain as proline-rich ligands, as revealed by competition assays. The G9 monobody, identified in this study, may be used as a highly selective probe for detecting and purifying cellular Fyn kinase.  相似文献   

13.
Apolipoprotein E Receptor 2 (ApoER2) and the tyrosine kinase Fyn are both members of the Reelin pathway, a signaling pathway essential for the laminar formation of the cortex during development and proper dendritic spine density and long-term potential (LTP) in the adult brain. In the presence of extracellular Reelin, ApoER2 binds the intracellular protein Dab1, an adaptor protein that is phosphorylated by Fyn. However, direct interactions between ApoER2 and Fyn are not well defined. Here, we show that total levels of ApoER2 and surface levels of ApoER2 are increased by active Fyn. Via a separate mechanism, ApoER2 is also phosphorylated by Fyn, an event that peaks in the postnatal cortex at day 5 and can occur at multiple ApoER2 tyrosine residues. Dab1 is also involved in this phosphorylation, promoting the phosphorylation of ApoER2 by Fyn when it is itself phosphorylated. These results elucidate some of the intracellular mechanisms that give rise to a functional Reelin pathway.  相似文献   

14.
Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin''s lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg176 to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr334 was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.  相似文献   

15.
Phosphatidylinositol 3-kinase enhancer-activating Akt (PIKE-A) binds Akt and upregulates its kinase activity, preventing apoptosis. PIKE-A can be potently phosphorylated on tyrosine residues 682 and 774, leading to its resistance to caspase cleavage. However, the upstream tyrosine kinases responsible for PIKE-A phosphorylation and subsequent physiological significance remain unknown. Here, we show that PIKE-A can be cleaved by the active apoptosome at both D474 and D592 residues. Employing fyn-deficient mouse embryonic fibroblast cells and tissues, we demonstrate that fyn is essential for phosphorylating PIKE-A and protects it from apoptotic cleavage. Active but not kinase-dead fyn interacts with PIKE-A and phosphorylates it on both Y682 and Y774 residues. Tyrosine phosphorylation in PIKE-A is required for its association with active fyn but not for Akt. Mutation of D into A in PIKE-A protects it from caspase cleavage and promotes cell survival. Thus, this finding provides a molecular mechanism accounting for the antiapoptotic action of src-family tyrosine kinase.  相似文献   

16.
The formation of stable cell-cell adhesions by type I cadherins depends on the association of their cytoplasmic domain with beta-catenin, and of beta-catenin with alpha-catenin. The binding of beta-catenin to these partners is regulated by phosphorylation of at least three critical tyrosine residues. Each of these residues is targeted by one or more specific kinases: Y142 by Fyn, Fer and cMet; Y489 by Abl; and Y654 by Src and the epidermal growth factor receptor. Developmental and physiological signals have been identified that initiate the specific phosphorylation and dephosphorylation of these residues, regulating cadherin function during neurite outgrowth, permeability of airway epithelium and synapse remodeling, and possibly initiating epithelial cell migration during development and metastasis.  相似文献   

17.
Amoui M  Miller WT 《Cellular signalling》2000,12(9-10):637-643
c-Abl preferentially phosphorylates peptide substrates that contain proline at the P+3 site (relative to the phosphorylated tyrosine). We previously described a mutant form of the Abl catalytic domain (Y569W) with altered substrate specificity at the P+3 position, as measured using synthetic peptides. In this study, we examine the phosphorylation of Crk, a protein substrate of Abl that is phosphorylated in the sequence Tyr221-Ala-Gln-Pro. In vitro, phosphorylation of Crk by Y569W Abl is greatly reduced relative to wild-type Abl. Overexpression of Y569W mutant Abl in 293T kidney cells produces a similar overall pattern of tyrosine phosphorylation as wild-type Abl, indicating that not all cellular proteins depend on Pro at P+3 for Abl recognition. However, phosphorylation of Crk by Y569W Abl in these cells is markedly reduced relative to wild-type Abl. A truncated form of Abl lacking the C-terminal polyproline region is not able to phosphorylate Crk in these assay conditions. Thus, proper phosphorylation of Crk by Abl depends not only on the interaction of the Crk SH3 domain with the Abl polyproline region, but also on the recognition of amino acids surrounding tyrosine by the Abl catalytic domain.  相似文献   

18.
Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1-DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family kinase inhibitors PP2 and SU6656 block both Netrin-1-dependent phosphorylation of DCC and axon outgrowth. PP2 also blocks the reorientation of Xenopus laevis retinal ganglion cells that occurs in response to Netrin-1, which suggests an essential role of the Src kinases in Netrin-1-dependent orientation. Fyn, but not Src, is able to phosphorylate the intracellular domain of DCC in vitro, and we demonstrate that Y1418 is crucial for DCC axon outgrowth function. Both DCC phosphorylation and Netrin-1-induced axon outgrowth are impaired in Fyn(-/-) CN and spinal cord explants. We propose that DCC is regulated by tyrosine phosphorylation and that Fyn is essential for the response of axons to Netrin-1.  相似文献   

19.
Association of the Src Family Tyrosine Kinase Fyn with TrkB   总被引:4,自引:2,他引:2  
Abstract: Fyn tyrosine kinase, a member of the Src family, was recently reported to be present in neurons and glia cells. We investigated whether Fyn is involved in the Trk-dependent signal transduction pathways of neurotrophin. The Fyn-Src homology domain 2 (SH2) was observed to associate in vitro with the intracellular domain of TrkB (ICD-TrkB). This association was dependent on the autophosphorylation of ICD-TrkB. The Fyn-SH2 domains bound to phosphorylated ICD-TrkB (plCD-TrkB) with an affinity similar to the binding of phospholipase Cγ (PLCγ)-SH2 domains to its autophosphorylation site in TrkB. The Src-SH2 domains showed substantially lower affinity with plCD-TrkB, suggesting that the association between Fyn-SH2 and plCD-TrkB is not due to non-specific interactions of SH2 domains with phosphorylated tyrosine residues. This is further supported by the observation that Fyn-SH2 was able to trap phosphorylated TrkB in cell lysate prepared from primary rat cortical neurons stimulated with brain-derived neurotrophic factor (BDNF). In contrast, endogenous Fyn was coprecipitated with TrkB from cortical neurons without BDNF stimulation. This basal association showed a threefold increase on BDNF stimulation, probably due to the SH2/phosphotyrosine interaction that was observed in the cell-free system. All these data suggest the involvement of Fyn in the neurotrophin signal transduction pathways downstream of TrkB.  相似文献   

20.
Middle-T antigen of mouse polyomavirus (MomT) associates with the cellular tyrosine kinases c-Src, c-Yes, and Fyn, while middle-T antigen of hamster polyomavirus (HamT) exclusively binds Fyn. This interaction is essential for polyomavirus-mediated transformation of cells in culture and tumor formation in animals. Here we show that the kinase domain of Fyn is sufficient for association with MomT but not for binding of HamT. We further demonstrate that a Fyn mutant lacking the SH2 domain is able to bind MomT but fails to associate with HamT, indicating that the SH2 domain of Fyn is essential for stable association with HamT. HamT, but not MomT, contains a tyrosine residue, Tyr-324, in the sequence context YEEI. Mutation of Tyr-324 to phenylalanine led to a drastic reduction of associated Fyn and abolished the oncogenicity of HamT. This suggests that Tyr-324 is the major phosphotyrosine residue mediating the binding of HamT to the SH2 domain of Fyn. These findings show that mouse and hamster polyomaviruses use different strategies to target Src-related tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号