首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 208 毫秒
1.
In a previous study, direct measurements of pulmonary capillary transit time by fluorescence video microscopy in anesthetized rabbits showed that chest inflation increased capillary transit time and decreased cardiac output. In isolated perfused rabbit lungs we measured the effect of lung volume, left atrial pressure (Pla), and blood flow on capillary transit time. At constant blood flow and constant transpulmonary pressure, a bolus of fluorescent dye was injected into the pulmonary artery and the passage of the dye through the subpleural microcirculation was recorded via the video microscope on videotape. During playback of the video signals, the light emitted from an arteriole and adjacent venule was measured using a video photoanalyzer. Capillary transit time was the difference between the mean time values of the arteriolar and venular dye dilution curves. We measured capillary transit time in three groups of lungs. In group 1, with airway pressure (Paw) at 5 cmH2O, transit time was measured at blood flow of approximately 80, approximately 40, and approximately 20 ml.min-1.kg-1. At each blood flow level, Pla was varied from 0 (Pla less than Paw, zone 2) to 11 cmH2O (Pla greater than Paw, zone 3). In group 2, at constant Paw of 15 cmH2O, Pla was varied from 0 (zone 2) to 22 cmH2O (zone 3) at the same three blood flow levels. In group 3, at each of the three blood flow levels, Paw was varied from 5 to 15 cmH2O while Pla was maintained at 0 cmH2O (zone 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Perfusion of the pulmonary acinus has been shown to be generally homogeneous, but there is a significant component that is heterogeneous. To investigate the contribution of the alveolar septal capillary network to acinar perfusion heterogeneity, the passage of fluorescent dye boluses through the subpleural microcirculation of isolated dog lung lobes was videotaped using fluorescence microscopy. As the videotapes were replayed, dye-dilution curves were recorded from each of the tributary branches of Y-shaped venules that drained single acini. For each Y-shaped venule, the mean appearance time difference between the pair of tributary branches was calculated from the dye curves. When the complex septal capillary networks were derecruited by high positive airway pressure, venular perfusion became proportionally more homogeneous. This result shows that septal capillary resistance and pathlength differences are important contributors to intra-acinar perfusion heterogeneity.  相似文献   

3.
The pressure-volume (P-V) characteristics of the lung microcirculation are important determinants of the pattern of pulmonary perfusion and of red and white cell transit times. Using diffuse light scattering, we measured capillary P-V loops in seven excised perfused dog lobes at four lung volumes, from functional residual capacity (FRC) to total lung capacity (TLC), over a wide range of vascular transmural pressures (Ptm). At Ptm 5 cmH(2)O, specific compliance of the microvasculature was 8.6%/cmH(2)O near FRC, decreasing to 2.7%/cmH(2)O as lung volume increased to TLC. At low lung volumes, the vasculature showed signs of strain stiffening (specific compliance fell as Ptm rose), but stiffening decreased as lung volume increased and was essentially absent at TLC. The P-V loops were smooth without sharp transitions, consistent with vascular distension as the primary mode of changes in vascular volume with changes in Ptm. Hysteresis was small (0.013) at all lung volumes, suggesting that, although surface tension may set basal capillary shape, it does not strongly affect capillary compliance.  相似文献   

4.
Although the lung is known to be a major site of neutrophil margination, the anatomic location of these sequestered cells within the lung is controversial. To determine the site of margination and the kinetics of neutrophil transit through the pulmonary microvasculature, we infused fluorescein isothiocyanate-labeled canine neutrophils into the pulmonary arteries of 10 anesthetized normal dogs and made fluorescence videomicroscopic observations of the subpleural pulmonary microcirculation through a window inserted into the chest wall. The site of fluorescent neutrophil sequestration was exclusively in the pulmonary capillaries with a total of 951 labeled cells impeded in the capillary bed for a minimum of 2 s. No cells were delayed in the arterioles or venules. Transit times of individual neutrophils varied over a wide range from less than 2 s to greater than 20 min with an exponential distribution skewed toward rapid transit times. These observations indicate that neutrophil margination occurs in the pulmonary capillaries with neutrophils impeded for variable periods of time on each pass through the lung. The resulting wide distribution of transit times may determine the dynamic equilibrium between circulating and marginated neutrophils.  相似文献   

5.
To determine the potential range of diaphragm sarcomere lengths in situ and the effect of changes in sarcomere length on capillary and fiber geometry, rat diaphragms were perfusion fixed in situ with glutaraldehyde at different airway pressures and during electrical stimulation. The lengths of thick (1.517 +/- 0.007 microns) and thin (1.194 +/- 0.048 microns) filaments were not different from those established for rat limb muscle. Morphometric techniques were used to determine fiber cross-sectional area, sarcomere length, capillary orientation, and capillary length and surface area per fiber volume. All measurements were referenced to sarcomere length, which averaged 2.88 +/- 0.08 microns at -20 to -25 cmH2O airway pressure (residual volume) and 2.32 +/- 0.05 microns at +20 to +26 cmH2O airway pressure (total lung capacity). The contribution of capillary tortuosity and branching to total capillary length was dependent on sarcomere length and varied from 5 to 22%, consistent with that shown previously for mammalian limb muscles over this range of sarcomere lengths. Capillary length per fiber volume [Jv(c,f)] was significantly greater at residual volume (3,761 +/- 193 mm-2) than at total lung capacity (3,142 +/- 118 mm-2) and correlated with sarcomere length [l; r = 0.628, Jv(c,f) = 876l + 1,156, P less than 0.01; n = 18]. We conclude that the diaphragm is unusual in that the apparent in situ minimal sarcomere length is greater than 2.0 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The isolated effects of alterations of lung inflation and transmural pulmonary arterial pressure (pressure difference between intravascular and pleural pressure) on pulmonary arterial blood volume (Vpa) were investigated in anesthetized intact dogs. Using transvenous phrenic nerve stimulation, changes in transmural pulmonary arterial pressure (Ptm) at a fixed transpulmonary pressure (Ptp) were produced by the Mueller maneuver, and increases in Ptp at relatively constant Ptm by a quasi-Valsalva maneuver. Also, both Ptm and Ptp were allowed to change during open airway lung inflation. Vpa was determined during these three maneuvers by multiplying pulmonary blood flow by pulmonary arterial mean transit time obtained by an ether plethysmographic method. During open airway lung inflation, mean (plus or minus SD) Ptp increased by 7.2 (plus or minus 3.7) cmH2O and Ptm by 4.3 (plus or minus 3.4) cmH2O for a mean increase in Vpa by 26.2 (plus or minus 10.7) ml. A pulmonary arterial compliance term (Delta Vpa/Delta Ptm) calculated from the Mueller maneuver was 3.9 ml/cmH2O and an interdependence term (Delta Vpa/Delta Ptp) calculated from the quasi-Valsalva maneuver was 2.5 ml/cmH2O for a 19% increase in lung volume, and 1.2 ml/cmH2O for an increase in lung volume from 19% to 35%. These findings indicate that in normal anesthetized dogs near FRC for a given change in Ptp and Ptm the latter results in a greater increase of Vpa.  相似文献   

7.
We have investigated the mechanism of alveolar liquid filling in pulmonary edema. We excised, degassed, and intrabronchially filled 14 dog lung lobes from nine dogs with 75, 150, 225, or 350 ml of 5% albumin solution, and then air inflated the lobes to a constant airway pressure of 25 cmH2O. By use of micropipettes, we punctured subpleural alveoli to measure alveolar liquid pressure by the servo-null technique. Alveolar liquid pressure was constant in all lobes despite differences in lobe liquid volume and averaged 10.6 +/- 1.3 cmH2O. Thus, in all lobes a constant pressure drop of 14.4 cmH2O existed from airway to alveolar liquid across the air-liquid interface. We attribute this finding, on the basis of the Laplace equation, to an air-liquid interface of constant radius in all the lobes. In fact, we calculated from the Laplace equation an air-liquid interface radius which equalled morphological estimates of alveolar radius. We conclude that in the steady state, alveoli that contained liquid have a constant radius of curvature of the air-liquid interface possibly because they are always completely liquid filled.  相似文献   

8.
The key determinants of alveolar capillary perfusion are transit times and the extent of recruitment. Capillaries are known to be heavily recruited in the dependent lung, but there are no direct data that bear on how capillary transit times might be affected by gravity. We directly determined mean capillary transit times on the surface of the upper, middle, and lower lung by measuring the passage of fluorescent dye through the capillaries using in vivo television microscopy. In anesthetized dogs, mean capillary transit times averaged 12.3 s in the upper lung, 3.1 s in the midlung, and 1.6 s in the lower lung. This near order of magnitude variation in speed of blood transit establishes that there is a vertical gradient of capillary transit times in the lung. As expected, dependent capillary networks were nearly fully recruited, whereas relatively few capillaries were perfused in the upper lung. The lengthy transit times and sparsely perfused capillary beds in the upper lung combine to provide a substantial part of pulmonary gas exchange reserve.  相似文献   

9.
Maximal airway narrowing during bronchoconstriction is greater in immature than in mature rabbits. At a given transpulmonary pressure (PL), the lung parenchyma surrounding the airway resists local deformation and provides a load that opposes airway smooth muscle shortening. We hypothesized that the force required to produce lung parenchymal deformation, quantified by the shear modulus, is lower in immature rabbit lungs. The shear modulus and the bulk modulus were measured in isolated mature (n = 8; 6 mo) and immature (n = 9; 3 wk) rabbit lungs at PL of 2, 4, 6, 8, and 10 cmH(2)O. The bulk modulus increased with increasing PL for mature and immature lungs; however, there was no significant difference between the groups. The shear modulus was lower for the immature than the mature lungs (P < 0.025), progressively increasing with increasing PL (P < 0.001) for both groups, and there was no difference between the slopes for shear modulus vs. PL for the mature and the immature lungs. The mean value of the shear modulus for mature and immature rabbit lungs at PL = 6 cmH(2)O was 4.5 vs. 3.8 cmH(2)O. We conclude that the shear modulus is less in immature than mature rabbit lungs. This small maturational difference in the shear modulus probably does not account for the greater airway narrowing in the immature lung, unless its effect is coupled with a relatively thicker and more compliant airway wall in the immature animal.  相似文献   

10.
In five spontaneously breathing anesthetized subjects [halothane approximately 1 minimal alveolar concentration (MAC), 70% N2O, 30% O2], flow, changes in lung volume, and esophageal and airway opening pressure were measured in order to partition the elastance (Ers) and flow resistance (Rrs) of the total respiratory system into the lung and chest wall components. Ers averaged (+/- SD) 23.0 +/- 4.9 cmH2O X l-1, while the corresponding values of pulmonary (EL) and chest wall (EW) elastance were 14.3 +/- 3.2 and 8.7 +/- 3.0 cmH2O X l-1, respectively. Intrinsic Rrs (upper airways excluded) averaged 2.3 +/- 0.2 cmH2O X l-1 X s, the corresponding values for pulmonary (RL) and chest wall (RW) flow resistance amounting to 0.8 +/- 0.4 and 1.5 +/- 0.5 cmH2O X l-1 X s, respectively. Ers increased relative to normal values in awake state, mainly reflecting increased EL. Rw was higher than previous estimates on awake seated subjects (approximately 1.0 cmH2O X l-1 X s). RL was relatively low, reflecting the fact that the subjects had received atropine (0.3-0.6 mg) and were breathing N2O. This is the first study in which both respiratory elastic and flow-resistive properties have been partitioned into lung and chest wall components in anesthetized humans.  相似文献   

11.
At functional residual capacity, lung expansion is more uniform in the prone position than in the supine position. We examined the effect of positive airway pressure (Paw) on this position-dependent difference in lung expansion. In supine and prone rabbits postmortem, we measured alveolar size through dependent and nondependent pleural windows via videomicroscopy at Paw of 0 (functional residual capacity), 7, and 15 cmH2O. After the chest was opened, alveolar size was measured in the isolated lung at several transpulmonary pressures (Ptp) on lung deflation. Alveolar mean linear intercept (Lm) was measured from the video images taken in situ. This was compared with those measured in the isolated lung to determine Ptp in situ. In the supine position, the vertical Ptp gradient increased from 0.52 cmH2O/cm at 0 cmH2O Paw to 0.90 cmH2O/cm at 15 cmH2O Paw, while the vertical gradient in Lm decreased from 2.17 to 0.80 microns/cm. In the prone position, the vertical Ptp gradient increased from 0.06 cmH2O/cm at 0 cmH2O Paw to 0.35 cmH2O/cm at 15 cmH2O Paw, but there was no change in the vertical Lm gradient. In anesthetized paralyzed rabbits in supine and prone positions, we measured pleural liquid pressure directly at 0, 7, and 15 cmH2O Paw with dependent and nondependent rib capsules. Vertical Ptp gradients measured with rib capsules were similar to those estimated from the alveolar size measurements. Lung inflation during mechanical ventilation may reduce the vertical nonuniformities in lung expansion observed in the supine position, thereby improving gas exchange and the distribution of ventilation.  相似文献   

12.
The purpose of this study was to determine the pattern of vascular pressure drop in newborn lungs and to define the contribution of active vasomotor tone to this longitudinal pressure profile. We isolated and perfused with blood the lungs from 22 rabbit pups, 5-19 days old. We inflated the lungs to a constant airway pressure of 7 cmH2O, and at constant blood flow, we maintained outflow pressure in the circulation greater than airway pressure at the level of micropuncture (zone 3). By the use of glass micropipettes and a servo-nulling device, we measured pressures in small (20-60 micron diam) subpleural arterioles and venules in the lungs of 13 newborn rabbits. We found that 60% of the pressure drop was in arteries, 31% in microvessels of less than 20-60 micron diam, and 9% in veins. In the lungs of an additional nine rabbit pups we measured microvascular pressures before and after the addition to the perfusate of the vasodilator, papaverine hydrochloride. We found that removal of vasomotor tone resulted in a 33% reduction in total lung vascular resistance, which resulted from a decrease in pressure in arterial vessels, with no change in microvascular pressure. These findings indicate that arteries of greater than 60 micron diam constitute the major source of vascular resistance in isolated perfused newborn rabbit lungs.  相似文献   

13.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have directly measured lung interstitial fluid pressure at sites of fluid filtration by micropuncturing excised left lower lobes of dog lung. We blood-perfused each lobe after cannulating its artery, vein, and bronchus to produce a desired amount of edema. Then, to stop further edema, we air-embolized the lobe. Holding the lobe at a constant airway pressure of 5 cmH2O, we measured interstitial fluid pressure using beveled glass micropipettes and the servo-null method. In 31 lobes, divided into 6 groups according to severity of edema, we micropunctured the subpleural interstitium in alveolar wall junctions, in adventitia around 50-micron venules, and in the hilum. In all groups an interstitial fluid pressure gradient existed from the junctions to the hilum. Junctional, adventitial, and hilar pressures, which were (relative to pleural pressure) 1.3 +/- 0.2, 0.3 +/- 0.5, and -1.8 +/- 0.2 cmH2O, respectively, in nonedematous lobes, rose with edema to plateau at 4.1 +/- 0.4, 2.0 +/- 0.2, and 0.4 +/- 0.3 cmH2O, respectively. We also measured junctional and adventitial pressures near the base and apex in each of 10 lobes. The pressures were identical, indicating no vertical interstitial fluid pressure gradient in uniformly expanded nonedematous lobes which lack a vertical pleural pressure gradient. In edematous lobes basal pressure exceeded apical but the pressure difference was entirely attributable to greater basal edema. We conclude that the presence of an alveolohilar gradient of lung interstitial fluid pressure, without a base-apex gradient, represents the mechanism for driving fluid flow from alveoli toward the hilum.  相似文献   

15.
There is little information on the distribution of acinarperfusion because it is difficult to resolve blood flow within such small regions. We hypothesized that the known heterogeneity of arteriolar blood flow and capillary blood flow would result in heterogeneous acinar perfusion. To test this hypothesis, the passage offluorescent dye boluses through the subpleural microcirculation ofisolated dog lobes was videotaped by using fluorescence microscopy. Asthe videotapes were replayed, dye-dilution curves were recorded fromeach of the tributary branches of Y-shaped venules that drained anacinus. From the dye curves, we calculated the mean appearance time ofeach curve. The difference in mean appearance times between venulartributary branches was small in most cases. In 43% of the observedvenular branch pairs, the dye curves were essentially superimposable(the mean appearance-time difference was <5%); and in another 42%,the mean appearance-time difference between curves was 5-10%.From these results, we conclude that acinar perfusion is unexpectedlyhomogeneous.

  相似文献   

16.
High peak inspiratory pressures (PIP) during mechanical ventilation can induce lung injury. In the present study we compare the respective roles of high tidal volume with high PIP in intact immature rabbits to determine whether the increase in capillary permeability is the result of overdistension of the lung or direct pressure effects. New Zealand White rabbits were assigned to one of three protocols, which produced different degrees of inspiratory volume limitation: intact closed-chest animals (CC), closed-chest animals with a full-body plaster cast (C), and isolated excised lungs (IL). The intact animals were ventilated at 15, 30, or 45 cmH2O PIP for 1 h, and the lungs of the CC and C groups were placed in an isolated lung perfusion system. Microvascular permeability was evaluated using the capillary filtration coefficient (Kfc). Base-line Kfc for isolated lungs before ventilation was 0.33 +/- 0.31 ml.min-1.cmH2O-1.100g-1 and was not different from the Kfc in the CC group ventilated with 15 cmH2O PIP. Kfc increased by 850% after ventilation with only 15 cmH2O PIP in the unrestricted IL group, and in the CC group Kfc increased by 31% after 30 cmH2O PIP and 430% after 45 cmH2O PIP. Inspiratory volume limitation by the plaster cast in the C group prevented any significant increase in Kfc at the PIP values used. These data indicate that volume distension of the lung rather than high PIP per se produces microvascular damage in the immature rabbit lung.  相似文献   

17.
To determine the effect of lung inflation and left atrial pressure on the hydrostatic pressure gradient for fluid flux across 20- to 60-microns-diam venules, we isolated and perfused the lungs from newborn rabbits, 7-14 days old. We used the micropuncture technique to measure venular pressures in some lungs and perivenular interstitial pressures in other lungs. For all lungs, we first measured venular or interstitial pressures at a constant airway pressure of 5 or 15 cmH2O with left atrial pressure greater than airway pressure (zone 3). For most lungs, we continued to measure venular or interstitial pressures as we lowered left atrial pressure below airway pressure (zone 2). Next, we inflated some lungs to whichever airway pressure had not been previously used, either 5 or 15 cmH2O, and repeated venular or interstitial pressures under one or both zonal conditions. We found that at constant blood flow a reduction of left atrial pressure below airway pressure always resulted in a reduction in venular pressure at both 5 and 15 cmH2O airway pressures. This suggests that the site of flow limitation in zone 2 was located upstream of venules. When left atrial pressure was constant relative to airway pressure, the transvascular gradient (venular-interstitial pressures) was greater at 15 cmH2O airway pressure than at 5 cmH2O airway pressure. These findings suggest that in newborn lungs edema formation would increase at high airway pressures only if left atrial pressure is elevated above airway pressure to maintain zone 3 conditions.  相似文献   

18.
Electronmicroscopic appearances of pulmonary capillaries were studied in rabbit lungs perfused in situ when the capillary transmural pressure (Ptm) was systematically raised from 12.5 to 72.5 +/- 2.5 cmH2O. The animals were anesthetized and exsanguinated, and after the chest was opened, the pulmonary artery and left atrium were cannulated and attached to reservoirs. The lungs were perfused with autologous blood for 1 min, and this was followed by saline-dextran and then buffered glutaraldehyde to fix the lungs for electron microscopy. Normal appearances were seen at 12.5 cmH2O Ptm. At 52.5 and 72.5 cmH2O Ptm, striking discontinuities of the capillary endothelium and alveolar epithelium were seen. A few disruptions were seen at 32.5 cmH2O Ptm (mostly in one animal), but the number of breaks per millimeter cell lining increased markedly up to 72.5 cmH20 Ptm, where the mean frequency was 27.8 +/- 8.6 and 13.6 +/- 1.4 (SE) breaks/mm for endothelium and epithelium, respectively. In some instances, all layers of the blood-gas barrier were disrupted and erythrocytes could be seen moving into the alveolar spaces. In about half the endothelial and epithelial breaks, the basement membranes remained intact. The average break lengths for both endothelium and epithelium did not change significantly with pressure. The width of the blood-gas barrier increased at 52.5 and 72.5 cmH2O Ptm as a result of widening of the interstitium caused by edema. The cause of the disruptions is believed to be stress failure of the capillary wall. The results show that high capillary hydrostatic pressures cause major changes in the ultrastructure of the walls of the capillaries, leading to a high-permeability form of edema.  相似文献   

19.
The objective of this investigation was to determine the minimum transpulmonary pressure (PL) at which the forces of interdependence between the airways and the lung parenchyma can prevent airway closure in response to maximal stimulation of the airways in excised canine lobes. We first present an analysis of the relationship between PL and the transmural pressure (Ptm) that airway smooth muscle must generate to close the airways. This analysis predicts that airway closure can occur at PL less than or equal to 10 cmH2O with maximal airway stimulation. We tested this prediction in eight excised canine lobes by nebulizing 50% methacholine into the airways while the lobe was held at constant PL values ranging from 25 to 5 cmH2O. Airway closure was assessed by comparing changes in alveolar pressure (measured by an alveolar capsule technique) and pressure at the airway opening during low-amplitude oscillations in lobar volume. Airway closure occurred in two of the eight lobes at PL = 10 cmH2O; in an additional five it occurred at PL = 7.5 cmH2O. We conclude that the forces of parenchymal interdependence per se are not sufficient to prevent airway closure at PL less than or equal to 7.5 cmH2O in excised canine lobes.  相似文献   

20.
To investigate the influence of positive end-expiratory pressure (PEEP) on hemodynamic measurements we examined the transmission of airway pressure to the pleural space during varying conditions of lung and chest wall compliance. Eight ventilated anesthetized dogs were studied in the supine position with the chest closed. Increases in pleural pressure were similar for both small and large PEEP increments (5-20 cmH2O), whether measured in the esophagus (Pes) or in the juxtacardiac space by a wafer sensor (Pj). Increments in Pj exceeded the increments in Pes at all levels of PEEP and under each condition of altered lung and chest wall compliance. When chest wall compliance was reduced by thoracic and abdominal binding, the fraction of PEEP sensed in the pleural space increased as theoretically predicted. Acute edematous lung injury produced by oleic acid (OA) did not alter the deflation limb pressure-volume characteristics of the lung, provided that end-inspiratory volume was adequate. With the chest and abdomen restricted OA was associated with less than normal transmission of airway pressure to the pleural space, most likely because the end-inspiratory volume required to restore normal deflation characteristics was not attained. Together these results indicate that the influence of acute edematous lung injury on the transmission of airway pressure to the pleural space depends importantly on the peak volume achieved during inspiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号