首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Despite their ecological relevance, field studies of the extraradical mycelia of ectomycorrhizal (ECM) fungi are rare. Here we examined in situ interactions between ECM mycelia and host vigour. Ectomycorrhizal mycelia were harvested with in-growth mesh bags buried under Norway spruce (Picea abies) clones planted in 1994 in a randomized block design. Mycelial biomass was determined and fungal species were identified by denaturing gradient gel electrophoresis (DGGE) and sequencing of the internal transcribed spacer 1 (ITS1) region. Microbial community structure in the mycelium was investigated by phospholipid fatty acid (PLFA) profiling. Compared to slow-growing spruce clones, fast-growing clones tended to support denser mycelia where the relative proportions of Atheliaceae fungi and PLFAs indicative of Gram-positive bacteria were higher. Ascomycetes and PLFAs representative of Gram-negative bacteria were more common with slow-growing clones. In general, the ECM mycelial community was similar to the ECM root-tip community. Growth rate of the hosts, the ECM mycelial community and the microbes associated with the mycelium were related, suggesting multitrophic interactions between trees, fungi and bacteria.  相似文献   

2.
2,4-dichlorophenoxyacetic acid (2,4-D), a chemical analogue of indole-3-acetic acid (IAA), is widely used as a growth regulator and exogenous source of auxin. Because 2,4-D evokes physiological and molecular responses similar to those evoked by IAA, it is believed that they share a common response pathway. Here, we show that a mutant, antiauxin resistant1 (aar1), identified in a screen for resistance to the anti-auxin p-chlorophenoxy-isobutyric acid (PCIB), is resistant to 2,4-D, yet nevertheless responds like the wild-type to IAA and 1-napthaleneacetic acid in root elongation and lateral root induction assays. That the aar1 mutation alters 2,4-D responsiveness specifically was confirmed by analysis of GUS expression in the DR5:GUS and HS:AXR3NT-GUS backgrounds, as well as by real-time PCR quantification of IAA11 expression. The two characterized aar1 alleles both harbor multi-gene deletions; however, 2,4-D responsiveness was restored by transformation with one of the genes missing in both alleles, and the 2,4-D-resistant phenotype was reproduced by decreasing the expression of the same gene in the wild-type using an RNAi construct. The gene encodes a small, acidic protein (SMAP1) with unknown function and present in plants, animals and invertebrates but not in fungi or prokaryotes. Taken together, these results suggest that SMAP1 is a regulatory component that mediates responses to 2,4-D, and that responses to 2,4-D and IAA are partially distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号