首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate in the biosynthetic pathway that forms phenylalanine and tyrosine in bacteria, fungi, plants, and apicomplexan parasites. Since this enzyme is absent from mammals, it represents a promising target for the development of new antimycobacterial drugs, which are needed to combat Mycobacterium tuberculosis, the causative agent of tuberculosis. Until recently, two putative open reading frames (ORFs), Rv0948c and Rv1885c, showing low sequence similarity to CMs have been described as "conserved hypothetical proteins" in the M. tuberculosis genome. However, we and others demonstrated that these ORFs are in fact monofunctional CMs of the AroQ structural class and that they are differentially localized in the mycobacterial cell. Since homologues to the M. tuberculosis enzymes are also present in Mycobacterium smegmatis, we cloned the coding sequences corresponding to ORFs MSMEG5513 and MSMEG2114 from the latter. The CM activities of both ORFs was determined, as well as their translational start sites. In addition, we analyzed the promoter activities of three M. tuberculosis loci related to phenylalanine and tyrosine biosynthesis under a variety of conditions using M. smegmatis as a surrogate host. Our results indicate that the aroQ (Rv0948c), *aroQ (Rv1885c), and fbpB (Rv1886c) genes from M. tuberculosis are constitutively expressed or subjected to minor regulation by aromatic amino acids levels, especially tryptophan.  相似文献   

2.
By comparing gene expression of virulent Mycobacterium tuberculosis H37Rv and attenuated strain H37Ra, we previously detected six genes that appear to be markedly downregulated in the attenuated strain compared with the virulent one. Three of these genes, i.e. Rv1345, Rv2770c, and Rv0288, code for proteins that can be predictively associated to immunological or pathogenetic aspects of M. tuberculosis infection; the other genes, i.e. Rv2336, Rv1320c, and Rv2819c, code for proteins with unknown functions (Rindi et al., 1999). In this paper we searched for the above mentioned genes in Pvu II-digested genomic DNA of a number of mycobacterial species by southern blot analysis employing PCR-generated probes in high-stringency conditions. Hybridization signals were only found in species belonging to the M. tuberculosis complex, i.e., M. tuberculosis, M. bovis, including the BCG strain, and M. microti, but not in other mycobacterial species, including M. avium, M. intracellulare, M. malmoense, M. xenopi, M. kansasii, M. simiae, M. marinum, M. scrofulaceum, M. gordonae, M. fortuitum, and M. smegmantis. These results indicate that genes Rv1345, Rv2770c, Rv0288, Rv2336, Rv1320c, and Rv2819c are associated with the most virulent mycobacteria and further support their potential role in M. tuberculosis virulence.  相似文献   

3.
A 9.5-kb section of DNA called region of deletion 1 (RD1) is present in virulent Mycobacterium tuberculosis strains but is deleted in all attenuated Mycobacterium bovis BCG vaccine strains. This region codes for at least nine genes. Some or all RD1 gene products may be involved in virulence and pathogenesis, and at least two, ESAT-6 and CFP-10, represent potent T- and B-cell antigens. In order to produce the entire set of RD1 proteins with their natural posttranslational modifications, a robust expression system for M. tuberculosis proteins in the fast-growing saprophytic strain Mycobacterium smegmatis was developed. Our system employs the inducible acetamidase promoter and allows translational fusion of recombinant M. tuberculosis proteins with polyhistidine or influenza hemagglutinin epitope tags for affinity purification. Using eGFP as reporter gene, we showed that the acetamidase promoter is tightly regulated in M. smegmatis and that this promoter is much stronger than the widely used constitutive groEL2 promoter. We then cloned 11 open reading frames (ORFs) found within RD1 and successfully expressed and purified the respective proteins. Sera from tuberculosis patients and M. tuberculosis-infected mice reacted with 10 purified RD1 proteins, thus demonstrating that Rv3871, Rv3872, Rv3873, CFP-10, ESAT-6, Rv3876, Rv3878, Rv3879c and ORF-14 are expressed in vivo. Finally, glycosylation of the RD1 proteins was analyzed. We present preliminary evidence that the PPE protein Rv3873 is glycosylated at its C terminus, thus highlighting the ability of M. smegmatis to produce M. tuberculosis proteins bearing posttranslational modifications.  相似文献   

4.
Initiation and maintenance of infection by mycobacteria in susceptible hosts are not well understood. A screen of Mycobacterium marinum transposon mutant library led to isolation of eight mutants that failed to cause haemolysis, all of which had transposon insertions in genes homologous to a region between Rv3866 and Rv3881c in Mycobacterium tuberculosis, which encompasses RD1 (Rv3871-Rv3879c), a known virulence gene cluster. The M. marinum mutants showed decreased virulence in vivo and failed to secrete ESAT-6, like M. tuberculosis RD1 mutants. M. marinum mutants in genes homologous to Rv3866-Rv3868 also failed to accumulate intracellular ESAT-6, suggesting a possible role for those genes in synthesis or stability of the protein. These transposon mutants and an ESAT-6/CFP-10 deletion mutant all showed reduced cytolysis and cytotoxicity to macrophages and significantly decreased intracellular growth at late stages of the infection only when the cells were infected at low multiplicity of infection, suggesting a defect in spreading. Direct evidence for cell-to-cell spread by wild-type M. marinum was obtained by microscopic detection in macrophage and epithelial monolayers, but the mutants all were defective in this assay. Expression of M. tuberculosis homologues complemented the corresponding M. marinum mutants, emphasizing the functional similarities between M. tuberculosis and M. marinum genes in this region that we designate extRD1 (extended RD1). We suggest that diminished membranolytic activity and defective spreading is a mechanism for the attenuation of the extRD1 mutants. These results extend recent findings on the genomic boundaries and functions of M. tuberculosis RD1 and establish a molecular cellular basis for the role that extRD1 plays in mycobacterial virulence. Disruption of the M. marinum homologue of Rv3881c, not previously implicated in virulence, led to a much more attenuated phenotype in macrophages and in vivo, suggesting that this gene plays additional roles in M. marinum survival in the host.  相似文献   

5.
Borich SM  Murray A  Gormley E 《Microbios》2000,102(401):7-15
A Mycobacterium bovis gene coding for a putative MalE maltose binding protein was cloned and its full-length sequence determined. Database searches revealed 99.9% identity with IpqY, encoding a putative sugar uptake protein from Mycobacterium tuberculosis strain H37Rv. The deduced protein product showed high sequence similarity to MalE-like proteins from a variety of bacterial species, including Mycobacterium leprae. Analysis of flanking database sequences from M. tuberculosis and M. leprae revealed the presence of malF-, malG- and malK-like genes. Comparison of these mycobacterial sequences with other maltose operons has allowed us to deduce a unique genomic arrangement of the genes involved in the uptake of maltose in members of the Mycobacterium tuberculosis complex and M. leprae.  相似文献   

6.
Mycobacterium avium subsp. paratuberculosis is genetically similar to other members of the Mycobacterium avium complex (MAC), some of which are nonpathogenic and widespread in the environment. We have utilized an M. avium subsp. paratuberculosis whole-genome microarray representing over 95% of the predicted coding sequences to examine the genetic conservation among 10 M. avium subsp. paratuberculosis isolates, two isolates each of Mycobacterium avium subsp. silvaticum and Mycobacterium avium subsp. avium, and a single isolate each of both Mycobacterium intracellulare and Mycobacterium smegmatis. Genomic DNA from each isolate was competitively hybridized with DNA from M. avium subsp. paratuberculosis K10, and open reading frames (ORFs) were classified as present, divergent, or intermediate. None of the M. avium subsp. paratuberculosis isolates had ORFs classified as divergent. The two M. avium subsp. avium isolates had 210 and 135 divergent ORFs, while the two M. avium subsp. silvaticum isolates examined had 77 and 103 divergent ORFs. Similarly, 130 divergent ORFs were identified in M. intracellulare. A set of 97 ORFs were classified as divergent or intermediate in all of the nonparatuberculosis MAC isolates tested. Many of these ORFs are clustered together on the genome in regions with relatively low average GC content compared with the entire genome and contain mobile genetic elements. One of these regions of sequence divergence contained genes homologous to a mammalian cell entry (mce) operon. Our results indicate that closely related MAC mycobacteria can be distinguished from M. avium subsp. paratuberculosis by multiple clusters of divergent ORFs.  相似文献   

7.
Mycobacteria adapt to a decrease in oxygen tension by entry into a non-replicative persistent phase. It was shown earlier that the two-component system, DevR-DevS, was induced in Mycobacterium tuberculosis and Mycobacterium bovis BCG cultures during hypoxia, suggesting that it may play a regulatory role in their adaptation to oxygen limitation. The presence of a homologous genetic system in Mycobacterium smegmatis was predicted by scanning its unfinished genome sequence with devR and devS genes of M. tuberculosis. Rv3134c, which is cotranscribed with devR-devS in M. tuberculosis, was also present in M. smegmatis at a similar location upstream from devR. The expression of all three genes was induced at the RNA and protein levels in M. smegmatis cultures grown under microaerobic and anaerobic conditions. The M. smegmatis genome also contained the hspX gene, encoding chaperone alpha-crystallin, Acr, that was induced during hypoxia. The similarity in sequences and hypoxia-responsive behaviour of devR-devS, Rv3134c and hspX genes in M. smegmatis and M. tuberculosis suggests that the molecular mechanisms involved in the dormancy response are likely conserved in these two species. M. smegmatis could therefore serve as a useful model for the delineation of the hypoxia response in general and DevR-DevS regulated pathways in particular.  相似文献   

8.
Mycobacterium avium is widely distributed in the environment, and it is chiefly found in water and soil. M. avium, as well as Mycobacterium smegmatis, has been recognized to produce a biofilm or biofilm-like structure. We screened an M. avium green fluorescent protein (GFP) promoter library in M. smegmatis for genes involved in biofilm formation on polyvinyl chloride (PVC) plates. Clones associated with increased GFP expression > or =2.0-fold over the baseline were sequenced. Seventeen genes, most encoding proteins of the tricarboxylic acid (TCA) cycle and GDP-mannose and fatty acid biosynthesis, were identified. Their regulation in M. avium was confirmed by examining the expression of a set of genes by real-time PCR after incubation on PVC plates. In addition, screening of 2,000 clones of a transposon mutant bank constructed using M. avium strain A5, a mycobacterial strain with the ability to produce large amounts of biofilm, revealed four mutants with an impaired ability to form biofilm. Genes interrupted by transposons were homologues of M. tuberculosis 6-oxodehydrogenase (sucA), enzymes of the TCA cycle, protein synthetase (pstB), enzymes of glycopeptidolipid (GPL) synthesis, and Rv1565c (a hypothetical membrane protein). In conclusion, it appears that GPL biosynthesis, including the GDP-mannose biosynthesis pathway, is the most important pathway involved in the production of M. avium biofilm.  相似文献   

9.
Abstract Chromosomal DNA of different species of mycobacteria, Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium avium and Mycobacterium smegmatis , has been submitted to polymerase chain reaction using two oligonucleotide primers highly homologous to DNA sequences flanking the quinolone resistance-determining region in the gyrA gene of Escherichia coli and Staphylococcus aureus . For each of these mycobacterial species, a 150-bp DNA fragment hybridizing with an intragenic probe of the gyrA gene of E. coli K12 was obtained. The nucleotide sequences of the 108-bp fragments amplified from M. tuberculosis and M. avium were determined. The two sequences were 87% homologous. Except for one residue, their deduced amino acid sequences were identical and shared 67% homology with the quinolone resistance-determining region of the gyrase A subunits of E. coli and S. aureus . Sequencing of the 108-bp fragment amplified from an in vitro mutant of M. avium , highly resistant to fluoroquinolones, showed a point mutation leading to the substitution of Ala for Val at a position corresponding to residues involved in quinolone resistance in E. coli and S. aureus , i.e. Ser 83 for E. coli and Ser 84 for S. aureus .  相似文献   

10.
Yellaboina S  Ranjan S  Vindal V  Ranjan A 《FEBS letters》2006,580(11):2567-2576
Iron dependent regulator, IdeR, regulates the expression of genes in response to intracellular iron levels in M. tuberculosis. Orthologs of IdeR are present in all the sequenced genomes of mycobacteria. We have used a computational approach to identify conserved IdeR regulated genes across the mycobacteria and the genes that are specific to each of the mycobacteria. Novel iron regulated genes that code for a predicted 4-hydroxy benzoyl coA hydrolase (Rv1847) and a protease dependent antibiotic regulatory system (Rv1846c, Rv0185c) are conserved across the mycobacteria. Although Mycobacterium natural-resistance-associated macrophage protein (Mramp) is present in all mycobacteria, it is, as predicted, an iron-regulated gene in only one species, M. avium subsp. paratuberculosis. We also observed an additional iron-regulated exochelin biosynthetic operon, which is present only in non-pathogenic Mycobacterium, M. smegmatis.  相似文献   

11.
The Mycobacterium leprae LSR (12 kDa) protein antigen has been reported to mimic whole cell M. leprae in T cell responses across the leprosy spectrum. In addition, B cell responses to specific sequences within the LSR antigen have been shown to be associated with immunopathological responses in leprosy patients with erythema nodosum leprosum. We have in the present study applied the M. leprae LSR DNA sequence as query to search for the presence of homologous genes within the recently completed Mycobacterium tuberculosis genome database (Sanger Centre, UK). By using the BLASTN search tool, a homologous M. tuberculosis open reading frame (336 bp), encoding a protein antigen of 12.1 kDa, was identified within the cosmid MTCY07H7B.25. The gene is designated Rv3597c within the M. tuberculosis H37Rv genome. Sequence alignment revealed 93% identity between the M. leprae and M. tuberculosis antigens at the amino acid sequence level. The finding that some B and T cell epitopes were localized to regions with amino acid substitutions may account for the putative differential responsiveness to this antigen in tuberculosis and leprosy.  相似文献   

12.
Intracellular survival plays a central role in the pathogenesis of Mycobacterium tuberculosis. To identify M. tuberculosis genes required for intracellular survival within macrophages, an M. tuberculosis H37Rv plasmid library was constructed by using the shuttle vector pOLYG. This plasmid library was electroporated into Mycobacterium smegmatis 1-2c, and the transformants were used to infect the human macrophage-like cell line U-937. Because M. smegmatis does not readily survive within macrophages, any increased intracellular survival is likely due to cloned M. tuberculosis H37Rv DNA. After six sequential passages of M. smegmatis transformants through U-937 cells, one clone (p69) was enriched more than 70% as determined by both restriction enzyme and PCR analyses. p69 demonstrated significantly enhanced survival compared to that of the vector control, ranging from 2.4- to 5.3-fold at both 24 and 48 h after infection. DNA sequence analysis revealed three open reading frames (ORFs) in the insert of p69. ORF2 (1.2 kb) was the only one which contained a putative promoter region and a ribosome-binding site. Deletion analysis of the p69 insert DNA showed that disruption of ORF2 resulted in complete loss of the enhanced intracellular survival phenotype. This gene was named the enhanced intracellular survival (eis) gene. By using an internal region of eis as a probe for Southern analysis, eis was found in the genomic DNA of various M. tuberculosis strains and of Mycobacterium bovis BCG but not in that of M. smegmatis or 10 other nonpathogenic mycobacterial species. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis showed that all M. smegmatis eis-containing constructs expressed a unique protein of 42 kDa, the predicted size of Eis. The expression of this 42-kDa protein directly correlated to the enhanced survival of M. smegmatis p69 in U-937 cells. These results suggest a possible role for eis and its protein product in the intracellular survival of M. tuberculosis.  相似文献   

13.
Phenolic glycolipids (PGL) play a major role in the virulence of mycobacteria, notably in strains of the Mycobacterium tuberculosis complex and in Mycobacterium leprae. The structure of the carbohydrate domain of these compounds is highly variable, and the genetic bases for these variations remain unknown. We demonstrated that the monoglycosylated PGL formed by Mycobacterium bovis differs from the triglycosylated PGL synthesized by M. tuberculosis (PGL-tb) because of the following two genetic defects: a frameshift mutation within the gene Rv2958c, encoding a glycosyltransferase involved in the transfer of the second rhamnosyl residue of the PGL-tb, and a deletion of a region that encompasses two genes, which encode a GDP-D-mannose 4,6-dehydratase and a GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase/reductase, required for the formation of activated L-fucose. Expression of these three genes in M. bovis BCG allowed synthesis of PGL-tb in this recombinant strain. Additionally, we showed that all M. bovis, Mycobacterium microti, Mycobacterium pinnipedii, and some Mycobacterium africanum strains harbor the same frameshift mutation in their Rv2958c orthologs. Consistently, the structure of PGLs purified from M. africanum (harboring the Rv2958c mutation) and M. pinnipedii strains revealed that these compounds are monoglycosylated PGL. These findings explain the specificity of PGL-tb production by some strains of the M. tuberculosis complex and have important implications for our understanding of the evolution of this complex.  相似文献   

14.
The protein encoded by the lexA gene from Mycobacterium leprae was overproduced in Escherichia coli . The recombinant protein bound to the promoter regions of the M. leprae lexA , M. leprae recA and M. smegmatis recA genes at sites with the sequences 5'-GAACACATGTTT and 5'-GAACAGGTGTTC, which belong to the 'Cheo box' family of binding sites recognized by the SOS repressor from Bacillus subtilis . Gel mobility shift assays were used to confirm that proteins with the same site specificity of DNA binding are also present in Mycobacterium tuberculosis and M. smegmatis . Complex formation was impaired by mutagenic disruption of the dyad symmetry of the M. smegmatis recA Cheo box. LexA binding was also inhibited by preincubation of the M. smegmatis and M. tuberculosis extracts with anti- M. leprae LexA antibodies, suggesting that the mycobacterial LexA proteins are functionally conserved at the level of DNA binding. Finally, exposure of M. smegmatis to DNA-damaging agents resulted in induction of the M. smegmatis recA promoter with concomitant loss of DNA binding of LexA to its Cheo box, confirming that this organism possesses the key regulatory elements of a functional SOS induction system.  相似文献   

15.
Specialized secretion systems of pathogenic bacteria commonly transport multiple effectors that act in concert to control and exploit the host cell as a replication-permissive niche. Both the Mycobacterium marinum and the Mycobacterium tuberculosis genomes contain an extended region of difference 1 (extRD1) locus that encodes one such pathway, the early secretory antigenic target 6 (ESAT-6) system 1 (ESX-1) secretion apparatus. ESX-1 is required for virulence and for secretion of the proteins ESAT-6, culture filtrate protein 10 (CFP-10), and EspA. Here, we show that both Rv3881c and its M. marinum homolog, Mh3881c, are secreted proteins, and disruption of RD1 in either organism blocks secretion. We have renamed the Rv3881c/Mh3881c gene espB for ESX-1 substrate protein B. Secretion of M. marinum EspB (EspBM) requires both the Mh3879c and Mh3871 genes within RD1, while CFP-10 secretion is not affected by disruption of Mh3879c. In contrast, disruption of Mh3866 or Mh3867 within the extRD1 locus prevents CFP-10 secretion without effect on EspBM. Mutants that fail to secrete only EspBM or only CFP-10 are less attenuated in macrophages than mutants failing to secrete both substrates. EspBM physically interacts with Mh3879c; the M. tuberculosis homolog, EspBT, physically interacts with Rv3879c; and mutants of EspBM that fail to bind Mh3879c fail to be secreted. We also found interaction between Rv3879c and Rv3871, a component of the ESX-1 machine, suggesting a mechanism for the secretion of EspB. The results establish EspB as a substrate of ESX-1 that is required for virulence and growth in macrophages and suggests that the contribution of ESX-1 to virulence may arise from the secretion of multiple independent substrates.  相似文献   

16.
17.
The present investigation dealt with the identification of Mycobacterium tuberculosis and M. bovis by RD9 region and 500 bp fragment PCR assays. Eight M. tuberculosis and 5 M. bovis characterized and identified from 40 human sputum and 41 bovine lung specimens and 20 M. tuberculosis and 9 M. bovis strains maintained at Mycobacteria Laboratory, Indian Veterinary Research Institute were included in this study. In this way, 28 M. tuberculosis and 14 M. bovis strains and, for comparison and control purpose, M. tuberculosis H37Rv, M. bovis BCG, M. canetti, M. smegmatis, M. phlei, M. chelonae, M. kansasii, M. xenopi and M. avium were subjected to RD9 and 500 bp amplification by PCR. All M. tuberculosis strains, M. tuberculosis H37 Rv and M. canetti yielded a product of 333 bp which showed presence of RD9 region in these strains, whereas all M. bovis yielded a product of 206 bp with RD9 PCR assay. There was no ampli-fication product found in M. bovis BCG, M. xenopi, M. smegmatis, M. phlei, M. chelonae, M. kansasii, and M. avium. PCR based on 500 bp fragment showed a product of 500 bp in all M. bovis strains and M. bovis BCG. There was no amplification product of 500 bp found in M. canetti, M. smegmatis, M. phlei, M. chelonae, M. avium, M. kansasii, M. xenopi and was absent in all M. tuberculosis strains. The PCR assay results correlated 100% with the culture and biochemical results of the isolates. Our study suggested that PCR based on RD9 and 500 bp may effectively identify two closely related species of M. tuberculosis and M. bovis.  相似文献   

18.
Brown AC  Parish T 《Plasmid》2006,55(1):81-86
The Escherichia coli-mycobacterium shuttle vector pJAM2 has been used to inducibly express genes in mycobacteria. The vector carries the promoter region from the highly inducible acetamidase gene of Mycobacterium smegmatis which is used to drive expression of heterologous genes. We used pJAM2 to over-express the Mycobacterium tuberculosis gene Rv2868c, a homologue of gcpE. In M. smegmatis the plasmid was stable, but the promoter region was readily deleted when the parental vector or recombinant plasmids were transformed into M. tuberculosis. We mapped the deletion by sequencing and found that it encompassed the entire acetamidase promoter and adjacent sequence totalling approximately 7.3 kb and occurred very soon after introduction into M. tuberculosis. This is the first report of instability of a vector carrying the acetamidase promoter in M. tuberculosis.  相似文献   

19.
20.
Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans, produce highly specific long chain beta-diols, the dimycocerosates of phthiocerol, and structurally related phenolic glycolipid (PGL) antigens, which are important virulence factors. In addition, M. tuberculosis also secretes glycosylated p-hydroxybenzoic acid methyl esters (p-HBAD) that contain the same carbohydrate moiety as the species-specific PGL of M. tuberculosis (PGL-tb). The genes involved in the biosynthesis of these compounds in M. tuberculosis are grouped on a 70-kilobase chromosomal fragment containing three genes encoding putative glycosyltransferases: Rv2957, Rv2958c, and Rv2962c. To determine the functions of these genes, three recombinant M. tuberculosis strains, in which these genes were individually inactivated, were constructed and biochemically characterized. Our results demonstrated that (i) the biosynthesis of PGL-tb and p-HBAD involves common enzymatic steps, (ii) the Rv2957, Rv2958c, and Rv2962c genes are involved in the formation of the glycosyl moiety of the two classes of molecules, and (iii) the product of Rv2962c catalyzes the transfer of a rhamnosyl residue onto p-hydroxybenzoic acid ethyl ester or phenolphthiocerol dimycocerosates, whereas the products of Rv2958c and Rv2957 add a second rhamnosyl unit and a fucosyl residue to form the species-specific triglycosyl appendage of PGL-tb and p-HBAD. The recombinant strains produced provide the tools to study the role of the carbohydrate domain of PGL-tb and p-HBAD in M. tuberculosis pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号