首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

2.
The action of the polyether antibiotic monensin on the release of gamma-[3H]amino-n-butyric acid [( 3H]GABA) from mouse brain synaptosomes is characterized. Monensin enhances the release of this amino acid transmitter in a dose-dependent manner and does not modify the efflux of the nontransmitter amino acid alpha-[3H]aminoisobutyrate. The absence of external Ca2+ fails to prevent the stimulatory effect of monensin on [3H]GABA release. Furthermore, monensin is less effective in stimulating [3H]GABA release in the presence of Ca2+. The releasing response to monensin is absolutely dependent on external Na+. The blockade of voltage-sensitive Na+ or Ca2+ channels does not modify monensin-induced release of the transmitter. Also, the blockade of the GABA uptake pathway fails to prevent the stimulatory effect of monensin on [3H]GABA release. Although monensin markedly increases Na+ permeability in synaptosomes, these data indicate that the Ca2+-independent monensin-stimulated transmitter release is not mediated by the Na+-dependent uptake pathway. It is concluded that the entrance of Na+ through monensin molecules inserted in the presynaptic membrane might be sufficient to initiate the intraterminal molecular events underlying transmitter release.  相似文献   

3.
Ca2+-dependent release of [3H] noradrenaline ([3H] NA) evoked by electrical stimulation of the isolated mouse vas deferens was subject to negative feedback modulation by idazoxan an alpha 2-adrenoceptor blocking agent. Both the resting release and that evoked by 1-phenylephrine proved to be Ca0-independent and unaffected by idazoxan. Ouabain-evoked release of [3H] acetylcholine from the myenteric plexus of ileal longitudinal muscle strips in the presence of eserine was not affected by atropine, but that evoked by electrical stimulation was enhanced. Since the release of NA or ACh by 1-phenylephrine and ouabain respectively is mainly of cytoplasmic origin, it is concluded that the release of transmitter from the cytoplasm is not subject to negative feedback modulation.  相似文献   

4.
A number of presynaptic cholinergic parameters (high affinity [3H]choline uptake, [3H]acetylcholine synthesis, [3H]acetylcholine release, and autoinhibition of [3H]acetylcholine release mediated by muscarinic autoreceptors) were comparatively analyzed in rat brain cortex synaptosomes during postnatal development. These various functions showed a differential time course during development. At 10 days of age the release of [3H]acetylcholine evoked by 15 mM KCl from superfused synaptosomes was Ca2+-dependent but insensitive to the inhibitory action of extrasynaptosomal acetylcholine. The muscarinic autoreceptors regulating acetylcholine release were clearly detectable only at 14 days, indicating that their appearance may represent a criterion of synaptic maturation more valuable than the onset of a Ca2+-dependent release.  相似文献   

5.
Previous work has demonstrated that the neurotoxin leptinotarsin elicits release of neurotransmitter from mammalian nerve terminals, and it has been suggested that the toxin may act either as a direct agonist of voltage-sensitive calcium channels in these terminals (Crosland et al., 1984) or as a calcium ionophore (Madeddu et al., 1985a,b). Preliminary studies (Yeager et al., 1987) demonstrated that leptinotarsin also evokes transmitter release from isolated elasmobranch electric organ nerve terminals. We now report further investigations of the effects of leptinotarsin in this system. The action of the toxin is saturable, releasing about the same small fraction of total transmitter as that released by depolarization. An upper limit for the concentration for half maximal release is estimated to be 4 nM. Leptinotarsin-evoked transmitter release exhibits behavior very similar to depolarization-evoked release with respect to dependence on Ca2+, Ba2+, and Sr2+ and blockade by Co2+, Cd2+, and trifluoperazine. Leptinotarsin also promotes the uptake of calcium into synaptosomes to a degree similar to that caused by depolarization by K+. The binding of leptinotarsin to nerve terminals is probably Ca2+ dependent and receptor mediated. Taken together with the behavior of leptinotarsin-evoked release in other preparations, these results are consistent with the hypothesis that this toxin acts by opening a presynaptic calcium channel. However, the possibility that leptinotarsin is a calcium ionophore cannot be excluded.  相似文献   

6.
The rate of translocation of newly synthesized acetylcholine (ACh) from the presynaptic cytosol of Torpedo electric organ nerve terminals into synaptic vesicles and the extent to which ACh release from these neurons is mediated by a vesicular mechanism were investigated. For this purpose the compound 2(4-phenylpiperidino)cyclohexanol (AH5183), which inhibits the active transport of ACh into isolated cholinergic synaptic vesicles, was employed. Preincubation of purified Torpedo nerve terminals (synaptosomes) with AH5183 does not affect the intraterminal synthesis of [3H]ACh but results in a marked inhibition (85%) of its Ca2+-dependent K+-evoked release. By contrast, the evoked release of the endogenous nonlabeled ACh is not affected by this compound. When AH5183 is added during radiolabeling, it causes a progressively smaller inhibition of [3H]ACh release which is completely abolished if the drug is added after the preparation has been labeled. These findings suggest that most of the newly synthesized synaptosomal [3H]ACh (85%) is released by a vesicular mechanism and that some [3H]ACh (15%) may be released by a different process. The translocation of cytosolic [3H]ACh into the synaptic vesicles was monitored by determining the time course of the loss of susceptibility of [3H]ACh release to AH5183. It was found not to be coupled kinetically to [3H]ACh synthesis and to lag behind it. The nature of the intraterminal processes underlying this lag is discussed.  相似文献   

7.
Extracellular [K+] can increase during some pathological conditions, resulting into excessive glutamate release through multiple mechanisms. We here investigate the overflow of [3H]D-aspartate ([3H] D-ASP) and of endogenous glutamate elicited by increasing [K+] from purified rat cerebrocortical synaptosomes. Depolarization with [K+] 15 mmol/L were prevented by the glutamate transporter inhibitors DL-threo-beta-benzyloxyaspartate (DL-TBOA) and dihydrokainate. Differently, the overflows of endogenous glutamate provoked by [K+] > 15 mmol/L were insensitive to both inhibitors; the external Ca2+-independent glutamate overflow caused by 50 mmol/L KCl was prevented by bafilomycin, by chelating intraterminal Ca2+, by blocking the mitochondrial Na+/Ca2+ exchanger and, for a small portion, by blocking anion channels. In contrast to purified synaptosomes, the 50 mmol/L K+-evoked release of endogenous glutamate or [3H]D-ASP was inhibited by DL-TBOA in crude synaptosomes; moreover, it was external Ca2+-insensitive and blocked by DL-TBOA in purified gliosomes, suggesting that carrier-mediated release of endogenous glutamate provoked by excessive [K+] in CNS tissues largely originates from glia.  相似文献   

8.
The impact of syntaxin and SNAP-25 cleavage on [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) exocytotic release evoked by different stimuli was studied in superfused rat synaptosomes. The external Ca2+-dependent K+-induced [3H]catecholamine overflows were almost totally abolished by botulinum toxin C1 (BoNT/C1), which hydrolyses syntaxin and SNAP-25, or by botulinum toxin E (BoNT/E), selective for SNAP-25. BoNT/C1 cleaved 25% of total syntaxin and 40% of SNAP-25; BoNT/E cleaved 40% of SNAP-25 but left syntaxin intact. The GABA uptake-induced releases of [3H]NA and [3H]DA were differentially affected: both toxins blocked the former, dependent on external Ca2+, but not the latter, internal Ca2+-dependent. BoNT/C1 or BoNT/E only slightly reduced the ionomycin-evoked [3H]catecholamine release. More precisely, [3H]NA exocytosis induced by ionomycin was sensitive to toxins in the early phase of release but not later. The Ca2+-independent [3H]NA exocytosis evoked by hypertonic sucrose, thought to release from the readily releasable pool (RRP) of vesicles, was significantly reduced by BoNT/C1. Pre-treating synaptosomes with phorbol-12-myristate-13-acetate, to increase the RRP, enhanced the sensitivity to BoNT/C1 of [3H]NA release elicited by sucrose or ionomycin. Accordingly, cleavage of syntaxin was augmented by the phorbol-ester. To conclude, our results suggest that clostridial toxins selectively target exocytosis involving vesicles set into the RRP.  相似文献   

9.
The existence on glutamatergic nerve endings of nicotinic acetylcholine receptors (nAChRs) mediating enhancement of glutamate release has often been suggested but not demonstrated directly. Here, we study the effects of nAChR agonists on [3 H]-d-aspartate ([3 H]-d-ASP) release from synaptosomes superfused in conditions known to prevent indirect effects. Nicotinic receptor agonists, while unable to modify the basal [3 H]-d-ASP release from human neocortex or rat striatal synaptosomes, enhanced the Ca2+ -dependent exocytotic release evoked by K+ (12 mm) depolarization. Their rank order of potency were anatoxin-a > epibatidine > nicotine > ACh (+ atropine). The anatoxin-a effect, both in human and rat synaptosomes, was antagonized by mecamylamine, alpha-bungarotoxin or methyllycaconitine. The basal release of [3 H]ACh from human cortical synaptosomes was increased by (-)-nicotine (EC50 = 1.16 +/- 0.33 microm) or by ACh plus atropine (EC50 = 2.0 +/- 0.04 microm). The effect of ACh plus atropine was insensitive to alpha-bungarotoxin, methyllycaconitine or alpha-conotoxin MII, whereas it was totally antagonized by mecamylamine or dihydro-beta-erythroidine. To conclude, glutamatergic axon terminals in human neocortex and in rat striatum possess alpha7* nicotinic heteroreceptors mediating enhancement of glutamate release. Release-enhancing cholinergic autoreceptors in human neocortex are nAChRs with a pharmacological profile compatible with the alpha4beta2 subunit combination.  相似文献   

10.
alpha-Latrotoxin, a presynaptic neurotoxin from the venom of Latrodectus mactans tredecimguttatus, induces massive [3H]GABA release from rat brain synaptosomes as a result of interaction with either Ca(2+)-dependent (neurexin 1 alpha or Ca(2+)-independent (latrophilin) membrane receptor. The main aim of the study was to elucidate whether the binding of alpha-latrotoxin to different types of receptors led to [3H]GABA secretion from one pool or in each case the source of neurotransmitter differs: in the presence of Ca2+ exocytosis is induced, while in the absence of Ca(2+)--outflow by mobile membrane GABA transporter from cytoplasm. We examined the effect of the depletion of cytosolic [3H]GABA pool by competitive inhibitors of the GABA transporter (nipecotic acid and 2,4-diaminobutyric acid) on the alpha-latrotoxin-stimulated neurotransmitter release. We also compared the influence of these agents on neurosecretion, evoked by depolarization with that evoked by alpha-latrotoxin. Depolarization was stimulated by 4-aminopyridine in the Ca(2+)-containing saline and high KCl in Ca(2+)-free medium. In synaptosomes treated with nipecotic acid unstimulated [3H]GABA release was significantly augmented and high KCl-evoked Ca(2+)-independent [3H]GABA release was essentially inhibited. But under the same conditions neurosecretion stimulated by alpha-latrotoxin greatly raised with respect to the control response. The similar results were obtained with the synaptosomes treated with 2,4-diaminobutyric acid. Another way to determine which of GABA pool is the target of alpha-latrotoxin action lay in analysis of the toxin effects on the preliminary depolarized synaptosomes. alpha-Latrotoxin influence was diminished by the preceding depolarization by 4-aminopyridine in Ca2+ presence. But after the high KCl stimulation effect of alpha-latrotoxin didn't change. These data suggest that alpha-latrotoxin triggers neurotransmitter release from synaptic vesicles via exocytosis. We suppose that the type of membrane receptor does not determine the mechanism of GABA release evoked by the toxin.  相似文献   

11.
The present study shows that N-[3H]methylcarbamylcholine ([3H]MCC) binds to a single population of high-affinity/low-density (KD = 5.0 nM; Bmax = 8.2 fmol/mg of protein) nicotinic binding sites in the rat cerebellum. Also, there exists a single class of high-affinity binding sites (KD = 4.8 nM; Bmax = 24.2 fmol/mg of protein) in the cerebellum for the M1 specific muscarinic ligand [3H]pirenzepine. In contrast, the M2 ligand, [3H]AF-DX 116, appears to bind to two classes of binding sites, i.e., a high-affinity (KD = 3 nM)/low-capacity (Bmax = 11.7 fmol/mg of protein) class, and a second class of lower affinity (KD = 28.4 nM) and higher capacity (Bmax = 36.3 fmol/mg of protein) sites. The putative M3 selective ligand [3H]4-diphenylacetoxy-N-methylpiperidine also binds to two distinct classes of binding sites in cerebellar homogenates, one of high affinity (KD = 0.5 nM)/low capacity (Bmax = 19.5 fmol/mg of protein) and one of low affinity (KD = 57.5 nM)/high capacity (Bmax = 140.6 fmol/mg of protein). In experiments which tested the effects of cholinergic drugs on acetylcholine release from cerebellar brain slices, the nicotinic agonist MCC enhanced spontaneous acetylcholine release in a concentration-dependent manner, and the maximal increase in acetylcholine release (59.0-68.0%) occurred at 10(-7) M. The effect of MCC to increase acetylcholine release was Ca2+-dependent and tetrodotoxin-insensitive, suggesting an action on cholinergic terminals. Also, the MCC-induced increase in acetylcholine release was effectively antagonized by dihydro-beta-erythroidine, d-tubocurarine, and kappa-bungarotoxin, but was insensitive to either atropine or alpha-bungarotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Reportedly, stimulation of D-2 dopamine receptors inhibits the depolarization-induced release of acetylcholine from the neostriatum in a cyclic AMP-independent manner. In the present study, we investigated the role of K+ and Ca2+ in the D-2 receptor-mediated inhibition of evoked [3H]acetylcholine release from rat striatal tissue slices. It is shown that the D-2 receptor-mediated decrease of K+-evoked [3H]acetylcholine release is not influenced by the extracellular Ca2+ concentration. However, increasing extracellular K+, in the presence and absence of Ca2+, markedly attenuates the effect of D-2 stimulation on the K+-evoked [3H]acetylcholine release. Furthermore, it is shown that activation of D-2 receptors in the absence of Ca2+ also inhibits the veratrine-evoked release of [3H]acetylcholine from rat striatum. These results suggest that the D-2 dopamine receptor mediates the decrease of depolarization-induced [3H]acetylcholine release from rat striatum primarily by stimulation of K+ efflux (opening of K+ channels) and inhibition of intracellular Ca2+ mobilization.  相似文献   

13.
The inhibitory effects of botulinum neurotoxins types A and B on Ca2(+)-dependent evoked release of [3H]noradrenaline from rat cerebrocortical synaptosomes were compared and their molecular basis investigated. A23187, a Ca2+ ionophore, proved more efficacious in reversing the blockade produced by type A than that by B, whereas the actions of neither were changed by increasing intraterminal cyclic GMP levels using 8-bromo-cyclic GMP of nitroprusside. Disruption of the actin-based cytoskeleton with cytochalasin D did not alter the inhibition seen subsequently with either toxin. However, prior disassembly of microtubules with colchicine, nocodazole, or griseofulvin reduced the potency of type B toxin, but not that of type A toxin; stabilization of the microtubules with taxol counteracted this effect of colchicine. Because colchicine treatment of synaptosomes did not interfere with the measurable binding of type B toxin or its apparent uptake, it appears to act intracellularly. Collectively, these data suggest that botulinum neurotoxins types A and B inactivate transmitter release by interaction at different sites in the process. Based on the consistent results observed with four different drugs known to affect selectively microtubules, their involvement in the action of the type B neurotoxin is proposed.  相似文献   

14.
《The Journal of cell biology》1983,97(6):1737-1744
The crude extract of venom glands of the polychaete annelid Glycera convoluta triggers a large Ca2+-dependent acetylcholine release from both frog motor nerve terminals and Torpedo electric organ synaptosomes. This extract was partially purified by Concanavalin A affinity chromatography. The biological activity was correlated in both preparations to a 300,000-dalton band, as shown by gel electrophoresis. This confirmed previous determinations obtained with chromatographic methods. This glycoprotein binds to presynaptic but not postsynaptic plasma membranes isolated from Torpedo electric organ. Pretreatment of intact synaptosomes by pronase abolished both the binding and the venom- induced acetylcholine release without impairing the high K+-induced acetylcholine release. Pretreatment of nerve terminal membranes by Concanavalin A similarly prevented the binding and the biological response. Binding to Torpedo membranes was still observed in the presence of EGTA. An antiserum directed to venom glycoproteins inhibited the neurotoxin so we could directly follow its binding to the presynaptic membrane. Glycera convoluta neurotoxin has to bind to a ectocellularly oriented protein of the presynaptic terminal to induce transmitter release.  相似文献   

15.
Because ATP is degraded to adenosine, its effect could be mediated by both P1 and P2 receptors. Hence, the actions of an ATP analogue, resistant to enzymatic breakdown (alpha, beta-methylene ATP), were studied on the resting and electrically evoked release of radioactivity from longitudinal muscle strips of guinea pig ileum, preloaded either with [3H]choline or with [3H]noradrenaline. Their effects were compared with the actions of adenosine and ATP. Although adenosine and ATP markedly decreased the [3H]acetylcholine release evoked by field stimulation, alpha,beta-methylene-ATP, a potent and selective agonist of P2x receptors, enhanced this release. However, 2-methyl-2-thio-ATP, an agonist of the P2y receptors, neither enhanced nor inhibited the [3H]-acetylcholine release. 8-Phenyltheophylline, an antagonist of P1 receptors, increased the stimulation-evoked release of acetylcholine, indicating that the release of acetylcholine is tonically controlled by endogenous adenosine via P1 receptors. When alpha,beta-methylene-ATP and 8-phenyltheophylline were added together, their potentiating effect on the acetylcholine release proved to be additive. Because alpha,beta-methylene-ATP failed to antagonize the presynaptic effect of adenosine on P1 purinoceptors, it seems very likely that its effect to enhance transmitter release is mediated via separate receptors, i.e., via P2x receptors, located on the axon terminals. Similarly, the stimulation-evoked release of [3H]noradrenaline was enhanced slightly by alpha,beta-methylene-ATP. Our results suggest that both cholinergic and noradrenergic axon terminals are equipped with P2 receptors through which the stimulation-evoked release of transmitter can be modulated by ATP in a positive manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Synaptosomes prepared from freshly obtained human cerebral cortex and labeled with [3H]choline have been used to investigate the modulation of [3H]acetylcholine ([3H]ACh) release by 5-hydroxytryptamine (5-HT). The Ca(2+)-dependent release of [3H]-ACh occurring when synaptosomes were exposed in superfusion to 15 mM KCl was inhibited by 5-HT (0.01-1 microM) in a concentration-dependent manner. The effect of 5-HT was mimicked by 1-phenylbiguanide, a 5-HT3 receptor agonist, but not by 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT1A receptor agonist. The 5-HT3 receptor antagonists tropisetron and ondansetron blocked the effect of 5-HT, whereas spiperone and ketanserin were ineffective. It is suggested that cholinergic axon terminals in the human cerebral cortex possess 5-HT receptors that mediate inhibition of ACh release and appear to belong to the 5-HT3 type.  相似文献   

17.
Presynaptic muscarinic and nicotinic receptors in the cerebral cortex reportedly inhibit and increase acetylcholine (ACh) release, respectively. In this study, we investigated whether these receptors reside on cholinergic nerve terminals projecting to the cerebral cortex from the nucleus basalis magnocellularis (nbm). Adult male rats received unilateral infusions of ibotenic acid (5 micrograms/1 microliter) in the nbm. Two weeks later, cerebral cortical cholinergic markers (choline acetyltransferase activity, high-affinity choline uptake, and coupled ACh synthesis) were significantly reduced in synaptosomes prepared from the lesioned hemispheres compared to contralateral controls. The depolarization-induced release of [3H]ACh from these synaptosomes was also reduced in the lesioned hemispheres, reflecting the reduced synthesis of transmitter. However, the nbm lesions had no effect on the inhibition of release induced by 100 microM oxotremorine. Synaptosomal [3H]ACh release was not altered by nicotine or the nicotinic agonists anabaseine and 2-(3-pyridyl)-1,4,5,6-tetrahydropyrimidine. Nicotine (10-100 microM) did increase [3H]ACh release in control and lesioned hemispheres in cortical minces, but to a similar extent. These results suggest that neither muscarinic nor nicotinic receptors modulating ACh release reside on nbm-cholinergic terminals.  相似文献   

18.
The aim of the present paper was to determine whether the release of glutamate from putative "glutamergic" terminals in the cerebellum is influenced by gamma-aminobutyric acid (GABA). In a group of preliminary experiments, we present biochemical evidence in favour of a neurotransmitter role of glutamate in the cerebellum: (1) endogenous glutamate was released from depolarized cerebellar synaptosomal preparations in a Ca2+-dependent away; (2) [14C]glutamate was synthesized from [14C]glutamine in cerebellar synaptosomes, and the newly synthesized [14C]glutamate was released released in a Ca2+-dependent way; (3) the elevation of cyclic GMP elicited by depolarization of cerebellar slices in the presence of Ca2+ was partly reversed by the glutamate antagonist glutamic acid diethyl ester, which probably prevented the interaction of endogenously released glutamate with postsynaptic receptors. GABA and muscimol at low concentrations (2--20 micrometers) potentiated the depolarization-induced release of D-[3H]aspartate (a glutamate analogue which labels the glutamate "reuptake pool") from cerebellar synaptosomes. The effect was concentration dependent and was largely prevented by two GABA antagonists, bicuculline and picrotoxin. The stimulation of D-[3H]aspartate release evoked by muscimol was linearly related to the logarithm of K+ concentration in the depolarizing medium. GABA did not affect the overall release of endogenous glutamate, but potentiated, in a picrotoxin-sensitive manner, the depolarization-evoked release of [14C]glutamate previously synthesized from [14C]glutamine. Since nerve endings are the major site of glutamate synthesis from glutamine, GABA and muscimol appear to exert their stimulatory effect at the level of "glutamergic" nerve terminals, probably after interacting with presynaptic GABA receptors. The possible functional significance of these findings is briefly discussed.  相似文献   

19.
Release of preaccumulated, tritium-labeled dopamine ([3H]DA) from preparations of isolated nerve terminals (synaptosomes) of rat median eminence (ME) and corpus striatum (CS) was examined over short time intervals (1-20 s). In both preparations, basal efflux of [3H]DA was linear with time. Depolarization with high K+ resulted in an initial rapid release of [3H]DA which stabilized by 20 s, whereas veratridine elicited an increased rate of release over basal levels that was linear over the first 20 s. The calculated rate constants of release for both the initial phase of K+- and the veratridine-stimulated release were approximately threefold greater in CS than in ME synaptosomes. The major component of the high K+-induced release of [3H]DA from both synaptosome preparations increased as a graded function of [Ca2+]o. However, a smaller component, independent of external Ca2+, existed in both ME and CS synaptosomes. Increasing the [Mg2+] in the external solution resulted in a right shift of both the [K+]o and the [Ca2+]o dose-response curves, consistent with actions of Mg2+ on screening surface membrane charges and blocking voltage-dependent Ca2+ channels. In all studies, steady-state uptake of the [3H]DA was about twofold greater into CS than into ME synaptosomes. Moreover, the fraction of incorporated [3H]DA released by stimulation from the CS was much greater than that released from ME synaptosomes. These data are consistent with differences between these two types of dopaminergic terminals with respect to packaging and/or distribution of the accumulated neurotransmitter in intraneuronal pools, as well as marked differences in the apparent kinetics of DA release.  相似文献   

20.
The effect of presynaptic neurotoxin from bee and cobra venom--phospholipases A2 on Na+-dependent high affinity [14C]choline transport from the striate body of rat brain into synaptosomes has been studied. It was shown that both phospholipases A2 inhibit the re-uptake of [14C]choline and specifically stimulate the release of [14C]acetylcholine from the synaptosomes. This effect is especially well-pronounced for bee venom phospholipase A2. It was assumed that damages of biochemical processes on the presynaptic membrane result in a blockade of synaptic transmission in nerve-muscle preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号