首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Xu R  Harrington DP 《Biometrics》2001,57(3):875-885
A semiparametric estimate of an average regression effect with right-censored failure time data has recently been proposed under the Cox-type model where the regression effect beta(t) is allowed to vary with time. In this article, we derive a simple algebraic relationship between this average regression effect and a measurement of group differences in k-sample transformation models when the random error belongs to the G(rho) family of Harrington and Fleming (1982, Biometrika 69, 553-566), the latter being equivalent to the conditional regression effect in a gamma frailty model. The models considered here are suitable for the attenuating hazard ratios that often arise in practice. The results reveal an interesting connection among the above three classes of models as alternatives to the proportional hazards assumption and add to our understanding of the behavior of the partial likelihood estimate under nonproportional hazards. The algebraic relationship provides a simple estimator under the transformation model. We develop a variance estimator based on the empirical influence function that is much easier to compute than the previously suggested resampling methods. When there is truncation in the right tail of the failure times, we propose a method of bias correction to improve the coverage properties of the confidence intervals. The estimate, its estimated variance, and the bias correction term can all be calculated with minor modifications to standard software for proportional hazards regression.  相似文献   

2.
删失数据下非线性半参数回归模型中参数的经验似然推断   总被引:1,自引:0,他引:1  
考察了响应变量在随机删失情形下的非线性半参数回归模型,构造了未知参数的经验对数似然比统计量和调整经验对数似然比统计量,证明在一定条件下,所构造的经验似然比统计量渐近于X~2分布,并由此构造出未知参数的置信域.此外,又构造了未知参数的最小二乘估计量,证明了它的渐近性质.通过模拟研究表明,经验似然方法在置信域的覆盖概率以及精度方面要优于最小二乘法.  相似文献   

3.
Zhang D  Lin X  Sowers M 《Biometrics》2000,56(1):31-39
We consider semiparametric regression for periodic longitudinal data. Parametric fixed effects are used to model the covariate effects and a periodic nonparametric smooth function is used to model the time effect. The within-subject correlation is modeled using subject-specific random effects and a random stochastic process with a periodic variance function. We use maximum penalized likelihood to estimate the regression coefficients and the periodic nonparametric time function, whose estimator is shown to be a periodic cubic smoothing spline. We use restricted maximum likelihood to simultaneously estimate the smoothing parameter and the variance components. We show that all model parameters can be easily obtained by fitting a linear mixed model. A common problem in the analysis of longitudinal data is to compare the time profiles of two groups, e.g., between treatment and placebo. We develop a scaled chi-squared test for the equality of two nonparametric time functions. The proposed model and the test are illustrated by analyzing hormone data collected during two consecutive menstrual cycles and their performance is evaluated through simulations.  相似文献   

4.
Moming Li  Guoqing Diao  Jing Qin 《Biometrics》2020,76(4):1216-1228
We consider a two-sample problem where data come from symmetric distributions. Usual two-sample data with only magnitudes recorded, arising from case-control studies or logistic discriminant analyses, may constitute a symmetric two-sample problem. We propose a semiparametric model such that, in addition to symmetry, the log ratio of two unknown density functions is modeled in a known parametric form. The new semiparametric model, tailor-made for symmetric two-sample data, can also be viewed as a biased sampling model subject to symmetric constraint. A maximum empirical likelihood estimation approach is adopted to estimate the unknown model parameters, and the corresponding profile empirical likelihood ratio test is utilized to perform hypothesis testing regarding the two population distributions. Symmetry, however, comes with irregularity. It is shown that, under the null hypothesis of equal symmetric distributions, the maximum empirical likelihood estimator has degenerate Fisher information, and the test statistic has a mixture of χ2-type asymptotic distribution. Extensive simulation studies have been conducted to demonstrate promising statistical powers under correct and misspecified models. We apply the proposed methods to two real examples.  相似文献   

5.
Outcome-dependent sampling (ODS) schemes can be a cost effective way to enhance study efficiency. The case-control design has been widely used in epidemiologic studies. However, when the outcome is measured on a continuous scale, dichotomizing the outcome could lead to a loss of efficiency. Recent epidemiologic studies have used ODS sampling schemes where, in addition to an overall random sample, there are also a number of supplemental samples that are collected based on a continuous outcome variable. We consider a semiparametric empirical likelihood inference procedure in which the underlying distribution of covariates is treated as a nuisance parameter and is left unspecified. The proposed estimator has asymptotic normality properties. The likelihood ratio statistic using the semiparametric empirical likelihood function has Wilks-type properties in that, under the null, it follows a chi-square distribution asymptotically and is independent of the nuisance parameters. Our simulation results indicate that, for data obtained using an ODS design, the semiparametric empirical likelihood estimator is more efficient than conditional likelihood and probability weighted pseudolikelihood estimators and that ODS designs (along with the proposed estimator) can produce more efficient estimates than simple random sample designs of the same size. We apply the proposed method to analyze a data set from the Collaborative Perinatal Project (CPP), an ongoing environmental epidemiologic study, to assess the relationship between maternal polychlorinated biphenyl (PCB) level and children's IQ test performance.  相似文献   

6.
Gray RJ 《Biometrics》2000,56(2):571-576
An estimator of the regression parameters in a semiparametric transformed linear survival model is examined. This estimator consists of a single Newton-like update of the solution to a rank-based estimating equation from an initial consistent estimator. An automated penalized likelihood algorithm is proposed for estimating the optimal weight function for the estimating equations and the error hazard function that is needed in the variance estimator. In simulations, the estimated optimal weights are found to give reasonably efficient estimators of the regression parameters, and the variance estimators are found to perform well. The methodology is applied to an analysis of prognostic factors in non-Hodgkin's lymphoma.  相似文献   

7.
Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to account for the heterogeneity between internal and external studies. This article proposes an empirical likelihood-based framework to improve the estimation of the semiparametric transformation models by incorporating information about the t-year subgroup survival probability from external sources. The proposed estimation procedure incorporates an additional likelihood component to account for uncertainty in the external information and employs a density ratio model to characterize population heterogeneity. We establish the consistency and asymptotic normality of the proposed estimator and show that it is more efficient than the conventional pseudopartial likelihood estimator without combining information. Simulation studies show that the proposed estimator yields little bias and outperforms the conventional approach even in the presence of information uncertainty and heterogeneity. The proposed methodologies are illustrated with an analysis of a pancreatic cancer study.  相似文献   

8.
There has been growing interest in the likelihood paradigm of statistics, where statistical evidence is represented by the likelihood function and its strength is measured by likelihood ratios. The available literature in this area has so far focused on parametric likelihood functions, though in some cases a parametric likelihood can be robustified. This focused discussion on parametric models, while insightful and productive, may have left the impression that the likelihood paradigm is best suited to parametric situations. This article discusses the use of empirical likelihood functions, a well‐developed methodology in the frequentist paradigm, to interpret statistical evidence in nonparametric and semiparametric situations. A comparative review of literature shows that, while an empirical likelihood is not a true probability density, it has the essential properties, namely consistency and local asymptotic normality that unify and justify the various parametric likelihood methods for evidential analysis. Real examples are presented to illustrate and compare the empirical likelihood method and the parametric likelihood methods. These methods are also compared in terms of asymptotic efficiency by combining relevant results from different areas. It is seen that a parametric likelihood based on a correctly specified model is generally more efficient than an empirical likelihood for the same parameter. However, when the working model fails, a parametric likelihood either breaks down or, if a robust version exists, becomes less efficient than the corresponding empirical likelihood.  相似文献   

9.
Semiparametric smoothing methods are usually used to model longitudinal data, and the interest is to improve efficiency for regression coefficients. This paper is concerned with the estimation in semiparametric varying‐coefficient models (SVCMs) for longitudinal data. By the orthogonal projection method, local linear technique, quasi‐score estimation, and quasi‐maximum likelihood estimation, we propose a two‐stage orthogonality‐based method to estimate parameter vector, coefficient function vector, and covariance function. The developed procedures can be implemented separately and the resulting estimators do not affect each other. Under some mild conditions, asymptotic properties of the resulting estimators are established explicitly. In particular, the asymptotic behavior of the estimator of coefficient function vector at the boundaries is examined. Further, the finite sample performance of the proposed procedures is assessed by Monte Carlo simulation experiments. Finally, the proposed methodology is illustrated with an analysis of an acquired immune deficiency syndrome (AIDS) dataset.  相似文献   

10.
In follow‐up studies, the disease event time can be subject to left truncation and right censoring. Furthermore, medical advancements have made it possible for patients to be cured of certain types of diseases. In this article, we consider a semiparametric mixture cure model for the regression analysis of left‐truncated and right‐censored data. The model combines a logistic regression for the probability of event occurrence with the class of transformation models for the time of occurrence. We investigate two techniques for estimating model parameters. The first approach is based on martingale estimating equations (EEs). The second approach is based on the conditional likelihood function given truncation variables. The asymptotic properties of both proposed estimators are established. Simulation studies indicate that the conditional maximum‐likelihood estimator (cMLE) performs well while the estimator based on EEs is very unstable even though it is shown to be consistent. This is a special and intriguing phenomenon for the EE approach under cure model. We provide insights into this issue and find that the EE approach can be improved significantly by assigning appropriate weights to the censored observations in the EEs. This finding is useful in overcoming the instability of the EE approach in some more complicated situations, where the likelihood approach is not feasible. We illustrate the proposed estimation procedures by analyzing the age at onset of the occiput‐wall distance event for patients with ankylosing spondylitis.  相似文献   

11.
Pan W  Lin X  Zeng D 《Biometrics》2006,62(2):402-412
We propose a new class of models, transition measurement error models, to study the effects of covariates and the past responses on the current response in longitudinal studies when one of the covariates is measured with error. We show that the response variable conditional on the error-prone covariate follows a complex transition mixed effects model. The naive model obtained by ignoring the measurement error correctly specifies the transition part of the model, but misspecifies the covariate effect structure and ignores the random effects. We next study the asymptotic bias in naive estimator obtained by ignoring the measurement error for both continuous and discrete outcomes. We show that the naive estimator of the regression coefficient of the error-prone covariate is attenuated, while the naive estimators of the regression coefficients of the past responses are generally inflated. We then develop a structural modeling approach for parameter estimation using the maximum likelihood estimation method. In view of the multidimensional integration required by full maximum likelihood estimation, an EM algorithm is developed to calculate maximum likelihood estimators, in which Monte Carlo simulations are used to evaluate the conditional expectations in the E-step. We evaluate the performance of the proposed method through a simulation study and apply it to a longitudinal social support study for elderly women with heart disease. An additional simulation study shows that the Bayesian information criterion (BIC) performs well in choosing the correct transition orders of the models.  相似文献   

12.
Mixed case interval‐censored data arise when the event of interest is known only to occur within an interval induced by a sequence of random examination times. Such data are commonly encountered in disease research with longitudinal follow‐up. Furthermore, the medical treatment has progressed over the last decade with an increasing proportion of patients being cured for many types of diseases. Thus, interest has grown in cure models for survival data which hypothesize a certain proportion of subjects in the population are not expected to experience the events of interest. In this article, we consider a two‐component mixture cure model for regression analysis of mixed case interval‐censored data. The first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric transformation model that describes the distribution of event time for the uncured subjects. We propose semiparametric maximum likelihood estimation for the considered model. We develop an EM type algorithm for obtaining the semiparametric maximum likelihood estimators (SPMLE) of regression parameters and establish their consistency, efficiency, and asymptotic normality. Extensive simulation studies indicate that the SPMLE performs satisfactorily in a wide variety of settings. The proposed method is illustrated by the analysis of the hypobaric decompression sickness data from National Aeronautics and Space Administration.  相似文献   

13.
Tan  Z. 《Biometrika》2009,96(1):229-236
Suppose that independent observations are drawn from multipledistributions, each of which is a mixture of two component distributionssuch that their log density ratio satisfies a linear model witha slope parameter and an intercept parameter. Inference forsuch models has been studied using empirical likelihood, andmixed results have been obtained. The profile empirical likelihoodof the slope and intercept has an irregularity at the null hypothesisso that the two component distributions are equal. We derivea profile empirical likelihood and maximum likelihood estimatorof the slope alone, and obtain the usual asymptotic propertiesfor the estimator and the likelihood ratio statistic regardlessof the null. Furthermore, we show the maximum likelihood estimatorof the slope and intercept jointly is consistent and asymptoticallynormal regardless of the null. At the null, the joint maximumlikelihood estimator falls along a straight line through theorigin with perfect correlation asymptotically to the firstorder.  相似文献   

14.
Schafer DW 《Biometrics》2001,57(1):53-61
This paper presents an EM algorithm for semiparametric likelihood analysis of linear, generalized linear, and nonlinear regression models with measurement errors in explanatory variables. A structural model is used in which probability distributions are specified for (a) the response and (b) the measurement error. A distribution is also assumed for the true explanatory variable but is left unspecified and is estimated by nonparametric maximum likelihood. For various types of extra information about the measurement error distribution, the proposed algorithm makes use of available routines that would be appropriate for likelihood analysis of (a) and (b) if the true x were available. Simulations suggest that the semiparametric maximum likelihood estimator retains a high degree of efficiency relative to the structural maximum likelihood estimator based on correct distributional assumptions and can outperform maximum likelihood based on an incorrect distributional assumption. The approach is illustrated on three examples with a variety of structures and types of extra information about the measurement error distribution.  相似文献   

15.
Liu D  Lin X  Ghosh D 《Biometrics》2007,63(4):1079-1088
We consider a semiparametric regression model that relates a normal outcome to covariates and a genetic pathway, where the covariate effects are modeled parametrically and the pathway effect of multiple gene expressions is modeled parametrically or nonparametrically using least-squares kernel machines (LSKMs). This unified framework allows a flexible function for the joint effect of multiple genes within a pathway by specifying a kernel function and allows for the possibility that each gene expression effect might be nonlinear and the genes within the same pathway are likely to interact with each other in a complicated way. This semiparametric model also makes it possible to test for the overall genetic pathway effect. We show that the LSKM semiparametric regression can be formulated using a linear mixed model. Estimation and inference hence can proceed within the linear mixed model framework using standard mixed model software. Both the regression coefficients of the covariate effects and the LSKM estimator of the genetic pathway effect can be obtained using the best linear unbiased predictor in the corresponding linear mixed model formulation. The smoothing parameter and the kernel parameter can be estimated as variance components using restricted maximum likelihood. A score test is developed to test for the genetic pathway effect. Model/variable selection within the LSKM framework is discussed. The methods are illustrated using a prostate cancer data set and evaluated using simulations.  相似文献   

16.
Dai JY  LeBlanc M  Kooperberg C 《Biometrics》2009,65(1):178-187
Summary .  Recent results for case–control sampling suggest when the covariate distribution is constrained by gene-environment independence, semiparametric estimation exploiting such independence yields a great deal of efficiency gain. We consider the efficient estimation of the treatment–biomarker interaction in two-phase sampling nested within randomized clinical trials, incorporating the independence between a randomized treatment and the baseline markers. We develop a Newton–Raphson algorithm based on the profile likelihood to compute the semiparametric maximum likelihood estimate (SPMLE). Our algorithm accommodates both continuous phase-one outcomes and continuous phase-two biomarkers. The profile information matrix is computed explicitly via numerical differentiation. In certain situations where computing the SPMLE is slow, we propose a maximum estimated likelihood estimator (MELE), which is also capable of incorporating the covariate independence. This estimated likelihood approach uses a one-step empirical covariate distribution, thus is straightforward to maximize. It offers a closed-form variance estimate with limited increase in variance relative to the fully efficient SPMLE. Our results suggest exploiting the covariate independence in two-phase sampling increases the efficiency substantially, particularly for estimating treatment–biomarker interactions.  相似文献   

17.
Summary We propose a semiparametric case‐only estimator of multiplicative gene–environment or gene–gene interactions, under the assumption of conditional independence of the two factors given a vector of potential confounding variables. Our estimator yields valid inferences on the interaction function if either but not necessarily both of two unknown baseline functions of the confounders is correctly modeled. Furthermore, when both models are correct, our estimator has the smallest possible asymptotic variance for estimating the interaction parameter in a semiparametric model that assumes that at least one but not necessarily both baseline models are correct.  相似文献   

18.
Informative drop-out arises in longitudinal studies when the subject's follow-up time depends on the unobserved values of the response variable. We specify a semiparametric linear regression model for the repeatedly measured response variable and an accelerated failure time model for the time to informative drop-out. The error terms from the two models are assumed to have a common, but completely arbitrary joint distribution. Using a rank-based estimator for the accelerated failure time model and an artificial censoring device, we construct an asymptotically unbiased estimating function for the linear regression model. The resultant estimator is shown to be consistent and asymptotically normal. A resampling scheme is developed to estimate the limiting covariance matrix. Extensive simulation studies demonstrate that the proposed methods are suitable for practical use. Illustrations with data taken from two AIDS clinical trials are provided.  相似文献   

19.
Summary The study of dependence between random variables is a mainstay in statistics. In many cases, the strength of dependence between two or more random variables varies according to the values of a measured covariate. We propose inference for this type of variation using a conditional copula model where the copula function belongs to a parametric copula family and the copula parameter varies with the covariate. In order to estimate the functional relationship between the copula parameter and the covariate, we propose a nonparametric approach based on local likelihood. Of importance is also the choice of the copula family that best represents a given set of data. The proposed framework naturally leads to a novel copula selection method based on cross‐validated prediction errors. We derive the asymptotic bias and variance of the resulting local polynomial estimator, and outline how to construct pointwise confidence intervals. The finite‐sample performance of our method is investigated using simulation studies and is illustrated using a subset of the Matched Multiple Birth data.  相似文献   

20.
This paper considers a Stein‐rule mixed regression estimator for estimating a normal linear regression model in the presence of stochastic linear constraints. We derive the small disturbance asymptotic bias and risk of the proposed estimator, and analytically compare its risk with other related estimators. A Monte‐Carlo experiment investigates the empirical risk performance of the proposed estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号