首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type II) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and MMP-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 A crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of approximately 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP.  相似文献   

2.
Matrix metalloproteinases (MMPs) participate in remodeling the extracellular matrix and facilitate entry of inflammatory cells into tissues. Infection of the murine central nervous system (CNS) with a neurotropic coronavirus induces encephalitis associated with increased levels of mRNA encoding MMP-3 and MMP-12. Whereas virus-induced MMP-3 expression was restricted to CNS resident astrocytes, MMP-12 mRNA was expressed by both inflammatory cells and CNS resident cells. Immunosuppression increased both MMP-3 and MMP-12 mRNA levels in CNS resident cells, suggesting that the presence of virus rather than inflammation induced protease up-regulation. MMP activity is partially regulated by a small family of genes encoding tissue inhibitors of matrix metalloproteinases (TIMPs); among the TIMPs, only TIMP-1 mRNA expression increased in the CNS following coronavirus infection. During inflammation TIMP-1 mRNA was most prominently expressed by infiltrating cells. By contrast, in the immunosuppressed host TIMP-1 mRNA was expressed by CNS resident cells. Analysis of cytokine and chemokine mRNA induction within the infected CNS of healthy and immunocompromised mice suggested a possible correlation between increased viral replication and increased levels of beta interferon, MMP-3, MMP-12, and TIMP-1 mRNA. CD4+ T cells which localize to the perivascular and subarachnoid spaces were identified as the primary source of TIMP-1 protein. By contrast, protein expression was undetectable in astrocytes or CD8+ T cells, the primary antiviral effectors that localize to the CNS parenchyma in response to infection. These data suggest that in contrast to the results seen with MMPs, inhibition of protease activity via TIMP-1 expression correlates with the differential tissue distribution of T-cell subsets during acute coronavirus-induced encephalitis.  相似文献   

3.
4.
Matrix metalloproteinases (MMPs) are secreted endopeptidases that play an essential role in remodeling the extracellular matrix (ECM). MMPs are primarily active during development, when the majority of ECM remodeling events occurs. In adults, elevated MMP activity has been observed in many pathological conditions such as cancer and osteoarthritis. The proteolytic activity of MMPs is controlled by their natural inhibitors - the tissue inhibitor of metalloproteinases (TIMPs). In addition to blocking MMP-mediated proteolysis, TIMPs have a number of MMP-independent functions including binding to cell surface proteins thereby stimulating signaling cascades. TIMP-2, the most studied member of the family, can both inhibit and activate MMPs directly, as well as inhibit MMP activity indirectly by upregulating expression of RECK, a membrane anchored MMP regulator. While TIMP-2 has been shown to play important roles in breast cancer, we describe how the MMP-independent effects of TIMP-2 can modulate the invasiveness of MCF-7, T47D and MDA-MB-231 breast cancer cells. Using an ALA + TIMP-2 mutant which is devoid of MMP inhibition, but still capable of initiating specific cell signaling cascades, we show that TIMP-2 can differentially affect MMP activity and cellular invasiveness in both an MMP dependent and independent manner. More specifically, MMP activity and invasiveness is increased with the addition of exogenous TIMP-2 in poorly invasive cell lines whereas it is decreased in highly invasive cells lines (MDA-MB-231). Conversely, the addition of ALA + TIMP-2 resulted in decreased invasiveness regardless of cell line.  相似文献   

5.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a broad spectrum inhibitor of the matrix metalloproteinases (MMPs), which function in extracellular matrix catabolism. Here, phage display was used to identify variants of human TIMP-2 that are selective inhibitors of human MMP-1, a collagenase whose unregulated action is linked to cancer, arthritis, and fibrosis. Using hard randomization of residues 2, 4, 5, and 6 (L1) and soft randomization of residues 34-40 (L2) and 67-70 (L3), a library was generated containing 2 × 10(10) variants of TIMP-2. Five clones were isolated after five rounds of selection with MMP-1, using MMP-3 as a competitor. The enriched phages selectively bound MMP-1 relative to MMP-3 and contained mutations only in L1. The most selective variant (TM8) was used to generate a second library in which residues Cys(1)-Gln(9) were soft-randomized. Four additional clones, selected from this library, showed a similar affinity for MMP-1 as wild-type TIMP-2 but reduced affinity for MMP-3. Variants of the N-terminal domain of TIMP-2 (N-TIMP-2) with the sequences of the most selective clones were expressed and characterized for inhibitory activity against eight MMPs. All were effective inhibitors of MMP-1 with nanomolar K(i) values, but TM8, containing Ser(2) to Asp and Ser(4) to Ala substitutions, was the most selective having a nanomolar K(i) value for MMP-1 but no detectable inhibitory activity toward MMP-3 and MMP-14 up to 10 μM. This study suggests that phage display and selection with other MMPs may be an effective method for discovering tissue inhibitor of metalloproteinase variants that discriminate between specified MMPs as targets.  相似文献   

6.
To test the hypothesis that Helicobacter pylori regulates gastric cell secretion of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), culture media from infected and uninfected human gastric adenocarcinoma (AGS) cells were analyzed by zymography, MMP activity assays, and immunoblotting. AGS cells secreted gelatinolytic (prominently 90 kDa) and caseinolytic (110 kDa) activity together with MMP-1, MMP-3, and TIMP-1, TIMP-2, and TIMP-3 isoforms. H. pylori secreted caseinolytic activity (60 kDa), MMP-3-like enzyme activity, and TIMP-3 immunoreactivity. H. pylori infection increased the 110-kDa caseinolytic activity and induced new gelatinolytic (~35 kDa) and caseinolytic (22 kDa) activities. Infection also increased both basal secretion and activation of MMP-1 and MMP-3, enhanced TIMP-3 secretion, and increased the formation of MMP-3/TIMP-3 complexes. TIMP-1 and TIMP-2 secretion were unchanged. Normal AGS cells showed a pancellular distribution of TIMP-3, with redistribution of immunoreactivity toward sites of bacterial attachment after H. pylori infection. The data indicate that MMP and TIMP secretion by AGS cells is modulated by H. pylori infection and that host MMP-3 and a TIMP-3 homolog expressed by H. pylori mediate at least part of the host cell response to infection.  相似文献   

7.
The membrane type (MT)-matrix metalloproteinases (MMPs) constitute a subgroup of membrane-anchored MMPs that are major mediators of pericellular proteolysis and physiological activators of pro-MMP-2. The MT-MMPs also exhibit differential inhibition by members of the tissue inhibitor of metalloproteinase (TIMP) family. Here we investigated the processing, catalytic activity, and TIMP inhibition of MT3-MMP (MMP-16). Inhibitor profile and mutant enzyme studies indicated that MT3-MMP is regulated on the cell surface by autocatalytic processing and ectodomain shedding. Inhibition kinetic studies showed that TIMP-3 is a high affinity inhibitor of MT3-MMP when compared with MT1-MMP (K(i) = 0.008 nm for MT3-MMP versus K(i) = 0.16 nm for MT1-MMP). In contrast, TIMP-2 is a better inhibitor of MT1-MMP. MT3-MMP requires TIMP-2 to accomplish full pro-MMP-2 activation and this process is enhanced in marimastatpretreated cells, consistent with regulation of active enzyme turnover by synthetic MMP inhibitors. TIMP-3 also enhances the activation of pro-MMP-2 by MT3-MMP but not by MT1-MMP. TIMP-4, in contrast, cannot support pro-MMP-2 activation with either enzyme. Affinity chromatography experiments demonstrated that pro-MMP-2 can assemble trimolecular complexes with a catalytic domain of MT3-MMP and TIMP-2 or TIMP-3 suggesting that pro-MMP-2 activation by MT3-MMP involves ternary complex formation on the cell surface. These results demonstrate that TIMP-3 is a major regulator of MT3-MMP activity and further underscores the unique interactions of TIMPs with MT-MMPs in the control of pericellular proteolysis.  相似文献   

8.
Calreticulin is an endoplasmic reticulum protein important in cardiovascular development. Deletion of the calreticulin gene leads to defects in the heart and the formation of omphaloceal. These defects could both be due to changes in the extracellular matrix composition. Matrix metalloproteinases (MMP)-2 and MMP-9 are two of the MMPs which are essential for cardiovascular remodelling and development. Here, we tested the hypothesis that the defects observed in the heart and body wall of the calreticulin null embryos are due to alterations in MMP-2 and MMP-9 activity. Our results demonstrate that there is a significant decrease in the MMP-9 and increase in the MMP-2 activity and expression in the calreticulin deficient cells. We also showed that there is a significant increase in the expression level of membrane type-1 matrix metalloproteinase (MT1-MMP). In contrast, there was no change in the tissue inhibitor of matrix metalloproteinase (TIMP)-1 or -2 in the calreticulin deficient cells as compared to the wild type cells. Interestingly, the inhibition of the MEK kinase pathway using PD98059 attenuated the decrease in the MMP-9 mRNA with no effect on the MMP-2 mRNA level in the calreticulin deficient cells. Furthermore, PI3 kinase inhibitor decreased the expression of both the MMP-2 and MMP-9. This study is the first report on the role of calreticulin in regulating MMP activity.  相似文献   

9.
Oncostatin M (OSM), a member of the IL-6 superfamily of cytokines, is elevated in patients with rheumatoid arthritis and, in synergy with IL-1, promotes cartilage degeneration by matrix metalloproteinases (MMPs). We have previously shown that OSM induces MMP and tissue inhibitor of metalloproteinase-3 (TIMP-3) gene expression in chondrocytes by protein tyrosine kinase-dependent mechanisms. In the present study, we investigated signaling pathways regulating the induction of MMP and TIMP-3 genes by OSM. We demonstrate that OSM rapidly stimulated phosphorylation of Janus kinase (JAK) 1, JAK2, JAK3, and STAT1 as well as extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase 1/2 mitogen-activated protein kinases in primary bovine and human chondrocytes. A JAK3-specific inhibitor blocked OSM-stimulated STAT1 tyrosine phosphorylation, DNA-binding activity of STAT1 as well as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), collagenase-3 (MMP-13), and TIMP-3 RNA expression. In contrast, a JAK2-specific inhibitor, AG490, had no impact on these events. OSM-induced ERK1/2 activation was also not affected by these inhibitors. Similarly, curcumin (diferuloylmethane), an anti-inflammatory agent, suppressed OSM-stimulated STAT1 phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation without affecting JAK1, JAK2, JAK3, ERK1/2, and p38 phosphorylation. Curcumin also inhibited OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression. Thus, OSM induces MMP and TIMP-3 genes in chondrocytes by activating JAK/STAT and mitogen-activated protein kinase signaling cascades, and interference with these pathways may be a useful approach to block the catabolic actions of OSM.  相似文献   

10.
11.
Matrix metalloproteinases (MMP) play a critical role in tumor invasion and metastasis. The goal of this study was to elucidate peculiarities of expression of gelatinases A and B (MMP-2 and MMP-9), membrane type MMP (MT1-MMP) and tissue inhibitor of MMP (TIMP-2) in immortal (IF) and transformed fibroblasts (TF). The study was carried out using embryo rat fibroblasts, sequentially immortalized with the polyomavirus LT gene and transformed with the E7 gene of human papillomavirus (HPV-16). Papillomaviruses type16 and 18 are the etiological factor for cervical cancer. A primary fibroblast (PF) culture of Fisher rats was used as control. Analysis of TF and IF included determination of MMP-2 and MMP-9 activity by hydrolysis of the specific substrate, radioactive collagen type IV; analysis of MMP spectra by a zymographic assay, and estimation of the mRNA expression by RT-PCR. It was found that: (1) collagenolytic activity of MMP was increased only in TF and it depended on the degree of cell tumorigenicity; (2) the study of MMP spectra revealed the presence of MMP-9 only in TF, whereas MMP-2 was found in IF as well; (3) the mRNA expression of MMP-9, MT1-MMP and TIMP-2 increased in all TF while the MMP-2 expression increased in TF only after TF cell selection on rats; (4) the collagenolytic activity as well as the mRNA expression of MMP-2 and MMP-9 and endogenous regulators (MT1-MMP and TIMP-2) did not change in immortalized fibroblasts compared to the PF culture. The data obtained indicate changes in the ratio enzyme/activator/inhibitor and also suggest a significant increase in the TF destructive potential. MMP-9 is supposed to be a marker of fibroblasts transformed by E7 HPV16 gene in a cell culture.  相似文献   

12.
The purpose of this study was to investigate the effects of high-force eccentric muscle contractions on collagen remodeling and on circulating levels of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in humans. Nine volunteers [5 men and 4 women, mean age 23 (SD 4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary contractile isometric force was recorded preexercise and on days 1, 2, 3, 4, 8, 11, and 14 postexercise. Venipuncture blood samples were also drawn on these days for measurement of serum creatine kinase activity and concentrations of MMP-9, TIMP-1, TIMP-2, and the MMP-2/TIMP-2 complex. Maximum voluntary contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P < 0.01). Collagen type IV staining intensity increased significantly on day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values (P < 0.05). Serum MMP-9 levels increased on day 8 postexercise (P < 0.01), and serum TIMP-1 was also significantly elevated on days 1, 2, 3, 4, and 14 postexercise (P < 0.05). These results suggest that a single bout of eccentric muscle contractions results in remodeling of endomysial type IV collagen, possibly via the MMP pathway.  相似文献   

13.
The goal of our study was to analyse the prognostic values for some matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in breast cancer. We evaluated the activity and the expression levels of MMP-9, MMP-2, TIMP-1 and TIMP-2 in malignant versus benign fresh breast tumor extracts. For this purpose, gelatinzymography, immunoblotting and ELISA were used to analyse the activity and expression of MMPs and TIMPs. We found that MMP-9 expression level and activity are increased in malignant tumors. In addition, MMP-9/TIMP-1 and MMP-2/TIMP-2 ratio values obtained by us were significantly different in malignant tumors compared to benign tumors. We suggest that the abnormal MMP-9/TIMP-1 balance plays a role in the configuration of breast invasive carcinoma of no special type and also in tumor growth, while altered MMP-2/TIMP-2 ratio value could be associated with lymph node invasion and used as a prognostic marker in correlation with Nottingham Prognostic Index. Finally, we showed that in malignant tumors high expression of estrogen receptors is associated with enhanced activity of MMP-2 and increased bcl- 2 levels, while high expression of progesterone receptors is correlated with low TIMP-1 protein levels.  相似文献   

14.
Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2(-/-) myotube formation. When differentiated in horse serum-containing medium, TIMP-2(-/-) myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2(-/-) myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with beta1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2(-/-) myotube size and induces increased MMP-9 activation and decreased beta1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on beta1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and beta1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.  相似文献   

15.
Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) is an important control point in tissue remodelling. Several findings have reported a marked MMP/TIMP imbalance in a variety of in vitro models in which oxidative stress was induced. Since previous studies showed that commercial hyaluronan and chondroitin-4-sulphate are able to limit lipid peroxidation during oxidative stress, we investigated the antioxidant capacity of purified human plasma chondroitin-4-sulfate in reducing MMP and TIMP imbalance in a model of ROS-induced oxidative injury in fibroblast cultures. Purified human plasma chondroitin-4-sulfate was added to the fibroblast cultures exposed to FeSO4 plus ascorbate. We assayed cell death, MMP and TIMP mRNA expression and protein activities, DNA damage, membrane lipid peroxidation, and aconitase depletion. FeSO4 plus ascorbate produced severe death of cells and increased MMP-1, MMP-2 and MMP-9 expression and protein activities. It also caused DNA strand breaks, enhanced lipid peroxidation and decreased aconitase. TIMP-1 and TIMP-2 protein levels and mRNA expression remain unaltered. Purified human plasma C4S, at three different doses, restored the MMP/TIMP homeostasis, increased cell survival, reduced DNA damage, inhibited lipid peroxidation and limited impairment of aconitase. These results further support the hypothesis that these biomolecules possess antioxidant activity and by reducing ROS production C4S may limit cell injury produced by MMP/TIMP imbalance.  相似文献   

16.
17.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   

18.
Glycyl-histidyl-lysine-Cu2+ (GHK-Cu) is a tripeptide-copper complex known to be a potent wound healing agent. We previously showed its ability to stimulate in vitro and in vivo the synthesis of extracellular matrix components. The aim of this study was to determine the effects of GHK-Cu on MMP-2 synthesis by dermal fibroblasts in culture. We showed that GHK-Cu increased MMP-2 levels in conditioned media of cultured fibroblasts. This effect was reproduced by copper ions but not by the tripeptide GHK alone. This stimulation was accompanied by an increase of MMP-2 mRNA level. We also showed that GHK-Cu increased the secretion of the tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2. Taken together, our results underline that GHK-Cu is not only an activator of connective tissue production but also of the remodeling of the extracellular matrix. It is able to modulate MMP expression by acting directly on wound fibroblasts.  相似文献   

19.
To understand the biologic function of TIMP-2, a member of the tissue inhibitors of metalloproteinases family, an inactivating mutation was introduced in the mouse Timp-2 gene by homologous recombination. Outbred homozygous mutants developed and procreated indistinguishably from wild type littermates, suggesting that fertility, development, and growth are not critically dependent on TIMP-2. Lack of functional TIMP-2, however, dramatically altered the activation of proMMP-2 both in vivo and in vitro. Fully functional TIMP-2 is essential for efficient activation of proMMP-2 in vivo. No evidence of successful functional compensation was observed. The results illustrate the duality of TIMP-2 function, i.e. at low concentrations, TIMP-2 exerts a "catalytic" or enhancing effect on cell-mediated proMMP-2 activation, whereas at higher concentrations, TIMP-2 inhibits the activation and/or activity of MMP-2.  相似文献   

20.
The unregulated activities of matrix metalloproteinases (MMPs) are implicated in disease processes including arthritis and tumor cell invasion and metastasis. MMP activities are controlled by four homologous endogenous protein inhibitors, tissue inhibitors of metalloproteinases (TIMPs), yet different TIMPs show little specificity for individual MMPs. The large interaction interface in the TIMP-1.MMP-3 complex includes a contiguous region of TIMP-1 around the disulfide bond between Cys1 and Cys70 that inserts into the active site of MMP-3. The effects of fifteen different substitutions for threonine 2 of this region reveal that this residue makes a large contribution to the stability of complexes with MMPs and has a dominant influence on the specificity for different MMPs. The size, charge, and hydrophobicity of residue 2 are key factors in the specificity of TIMP. Threonine 2 of TIMP-1 interacts with the S1' specificity pocket of MMP-3, which is a key to substrate specificity, but the structural requirements in TIMP-1 residue 2 for MMP binding differ greatly from those for the corresponding residue of a peptide substrate. These results demonstrate that TIMP variants with substitutions for Thr2 represent suitable starting points for generating more targeted TIMPs for investigation and for intervention in MMP-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号