首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (<100 m from the edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates.  相似文献   

2.
Forest edges are known to consist of microenvironments that may provide habitat for a different suite of species than forest interiors. Several abiotic attributes of the microenvironment may contribute to this change across the edge to center gradient (e.g., light, air temperature, soil moisture, humidity). Biotic components, such as seed dispersal, may also give rise to changes in species composition from forest edge to interior. We predicted that abiotic and biotic measures would correlate with distance from forest edge and would differ among aspects. To test these predictions, we measured abiotic and biotic variables on twelve 175 m transects in each of two 24 ha forest fragments in east-central Illinois that have remained in continuous isolation for upwards of 100 years. Both univariate and multivariate techniques were used to best describe the complex relationships among abiotic factors and between abiotic and biotic factors. Results indicate that microclimatic variables differ in the degree to and distance over which they show an edge effect. Relative humidity shows the widest edge, while light and soil moisture have the steepest gradients. Aspect influences are evidenced by the existence of more pronounced edge effects on south and west edges, except when these edges are protected by adjacent habitat. Edges bordered by agricultural fields have more extreme changes in microclimate than those bordered by trees. According to PCA results, species richness correlates well with microclimatic variation, especially light and soil moisture; however, in many cases species richness had a different depth of edge influence than either of these variables. The herbaceous plant community is heavily dominated by three species. Distributions of individual species as well as changes in plant community composition, estimated with a similarity index, indicate that competition may be influencing the response of the vegetation to the edge to interior gradient. This study indicates that edge effects must be considered when the size and potential buffering habitat of forest preserves are planned.  相似文献   

3.
Lin  Y.  Hulting  Melissa L.  Augspurger  Carol K. 《Plant Ecology》2004,170(1):15-27
Natural disturbances introduce spatial heterogeneity into forests by causing non-random mortality of trees. We examined whether wind was the primary cause of spatial patterns of dead trees at fragment- and individual tree-levels in three fragments of temperate deciduous forests in Illinois, USA. Dead trees and wind-caused types of mortality were expected to be higher at forest edges, on windward aspects, in poorly-drained soils, and adjacent to existing canopy gaps. The extent of wind-related mortality was determined by comparing spatial and temporal patterns of dead trees, as well as characteristics of trees downed by single windstorms versus all dead trees. At the fragment-level, we used randomly located quadrats of 25×25 m to sample edge and interior areas of Trelease Woods, Brownfield Woods, and Hart Woods in 1995-1996 and again in 1999-2000. We noted type of mortality (standing dead, snapped-off, or uprooted trees), and measured DBH ( 10 cm) and direction of fall of each dead tree. The same measures were made for trees felled by two single storms in 1994. At the individual tree-level, domino effects were evaluated by comparing openness surrounding target treefalls vs. an equal sample size of living trees. The study provided limited evidence that wind caused spatial patterns of dead trees. Instead, spatial patterns of dead trees in the fragments accumulated from domino effects at the individual tree-level in two of the three fragments. Dead trees were more associated with preexisting gaps. Contrary to our predictions at the fragment-level, the frequency of dead trees was not greater at edges, on windward aspects, or in poorly drained soils. This study demonstrated the complexity of spatial patterns of dead trees in forest fragments. The significant domino effects indicated that the occurrence of dead trees was not random, but determined by previous disturbances.  相似文献   

4.
5.
South American subtropical dry forests are highly threatened by fragmentation. Despite considerable research efforts aimed at predicting ecosystem alterations due to this driver of global change, we still need to deal with general principles to improve our ability to predict the impact of fragmentation. Our work is one of the few studies that analyse the relationship between forest fragmentation and decomposition. In 12 remnants of Chaco Serrano forest in Central Argentina we tested if decomposition rates of a common leaf-litter substrate varied with fragment size and between the forest edge and interior. Decomposition declined with fragment size, with no significant effects of location (edge/interior) or interaction between the two components of fragmentation. Our results suggest that in situ conditions for decomposition may change as a consequence of forest fragmentation, specifically as a result fragment size. This may lead to impaired nutrient recycling in smaller forest remnants.  相似文献   

6.
Several studies indicate that nest predation is higher along edges than in habitat interiors mainly due generalist predators arising from or proliferating in the surrounding matrix. Recent reviews demonstrate however that this is far from universal, in part because studies are strongly biased in temperate regions. Far fewer are known from the Neotropics and just a handful of studies have been carried out in the biologically-rich but severely fragmented Atlantic Forest of Brazil. Here we tested the influence of edge proximity on ground nest predation in a large (21,787 ha) Atlantic forest reserve. The experiment was carried out using chicken and quail eggs in 12 transects with 500 m in length, half of which parallel to internal edges (dirt roads) and half parallel to external edges (forest/pasture). Nest predation was significantly higher in wet season (42.7%), when no difference was found between edge and forest interior, than in dry season (16.5%), when nest predation was higher in forest interior (400 m). Within seasons, the difference between internal and external edges and the association between edge distance and edge type were not significant. Results suggest that ground nest predation in large protected areas of the Atlantic forest is mainly caused by forest dwellers rather than by species inhabiting the surrounding grassland-dominated landscape, mirroring recent findings in other tropical areas.  相似文献   

7.
Samples of the fraction of net rainfall passing through the forest floor collected at monthly intervals in four pristine forests in Colombian Amazonia, during the period between 1995–1997 were analysed for solute concentrations to estimate the element fluxes from the forest floor into the mineral soil and root nutrient uptake from these forest floors. Results were compared with inputs by throughfall, stemflow, litterfall and fine root decay. Element concentrations were tested for their relationship with litterflow amounts, rainfall intensity and length of the antecedent dry period and differences in element fluxes between ecosystems were assessed. Concentrations of elements in litterflow followed a similar pattern as those in throughfall, which indicates that element outputs from the forest floor are strongly related to those inputs in throughfall. In the forests studied, the average concentrations of elements as K, Mg, orthoP and the pH of the litterflow decreased relative to that in throughfall in most events, while the concentration of elements such as dissolved organic carbon, H, SO4 and Si increased in litterflow from these forests. Element concentrations in litterflow showed a poor correlation with variables such as litterflow amounts, rainfall intensity and antecedent dry period, except for K which showed a significant correlation (p>0.95) with analysed variables in all forests. Outputs were significantly different between forests (p>0.95); these fluxes, which particularly concerned cations, being the largest in the flood plain, while for anions outputs increased from the flood plain to the sedimentary plain. After adding the nutrient contributed by litter decomposition and fine root decay, the net outputs of main elements from the forest floors were still smaller than inputs by net precipitation (throughfall+stemflow) indicating that the litter layers clearly acted as a sink for most nutrients. Accordingly, the element balances confirm that the forest floors acted as a sink for nutrients coming in by throughfall, stemflow, litterfall and fine root decomposition. P, Mg and N appeared to be the most limiting nutrients and the forests studied efficiently recycled these nutrients.  相似文献   

8.
The extent to which plant communities are determined by resource availability is a central theme in ecosystem science, but patterns of small-scale variation in resource availability are poorly known. Studies of carbon (C) and nutrient cycling provide insights into factors limiting tree growth and forest productivity. To investigate rates of tropical forest litter production and decomposition in relation to nutrient availability and topography in the absence of confounding large-scale variation in climate and altitude we quantified nutrient fluxes via litterfall and leaf litter decomposition within three distinct floristic associations of tropical rain forest growing along a soil fertility gradient at the Sepilok Forest Reserve (SFR), Sabah, Malaysia. The quantity and nutrient content of small litter decreased along a gradient of soil nutrient availability from alluvial forest (most fertile) through sandstone forest to heath forest (least fertile). Temporal variation in litterfall was greatest in the sandstone forest, where the amount of litter was correlated negatively with rainfall in the previous month. Mass loss and N and P release were fastest from alluvial forest litter, and slowest from heath forest litter. All litter types decomposed most rapidly in the alluvial forest. Stand-level N and P use efficiencies (ratios of litter dry mass to nutrient content) were greatest for the heath forest followed by the sandstone ridge, sandstone valley and alluvial forests, respectively. We conclude that nutrient supply limits productivity most in the heath forest and least in the alluvial forest. Nutrient supply limited productivity in sandstone forest, especially on ridge and hill top sites where nutrient limitation may be exacerbated by reduced rates of litter decomposition during dry periods. The fluxes of N and P varied significantly between the different floristic communities at SFR and these differences may contribute to small-scale variation in species composition.  相似文献   

9.
Disruption to the physical structure of plant communities by habitat fragmentation can change microclimates, so leaf litter decomposition rates, being dependent on temperature and moisture, may also be affected. Similarly, smaller-scale structural features of plant communities can modify microclimates, and so may produce distinctive spatial patterns in decomposition rates. We investigated the effects of three types of structural feature having the potential to alter litter layer microclimates: fragmentation-induced modification that diminishes with distance from remnant edges (edge-core); concentric zones of locally modified conditions imposed by individual trees (Belsky–Canham); and highly localised abiotic modification collectively imposed by herbaceous plants (ground cover). We conducted a litter bag experiment in woodland remnants, testing whether the observed spatial variability in litter decomposition was attributable to one or more of these three structural features. The data provided the strongest support for the Belsky–Canham hypothesis, and the least support for the ground cover hypothesis. However, the hypotheses were not mutually exclusive, for each explained a component of the observed variability not explained by either of the other two. Proximity to remnant edge, proximity to trees, canopy light penetration, and ground cover density each explained part of the observed variability between plots. Decomposition rates did not differ with remnant area per se, for the effects of fragmentation were weak, and differed with cardinal direction. In contrast, the effects of individual trees were much stronger, and accounted for most of the between-plot variability. We found that litter decomposition rates in small remnants are only weakly affected by fragmentation, and we consider that the contributions of small remnants to landscape-scale functioning warrant closer attention.  相似文献   

10.
Summary Microbial degradation of the leaf litter ofShorea robusta Gaertn. was studied for a period of one year. The changes in the major litter constituents like sugar, starch, hemicellulose, cellulose and lignin were analysed from the litter kept under the nylon bags, at a month's interval. Four major elements phosphorous, potassium, magnesium and calcium were also assessed monthly from the decaying litter and the soil. The role of microfungi in mineral cycling and loss of litter substrates have been correlated.  相似文献   

11.
Effects of harvesting impacts and rehabilitation of tropical rain forest   总被引:1,自引:0,他引:1  
The tropical forest is decreasing at a rate of 16.9 million hectares per year and forest land is converted to agricultural land, pasture and plantation. Decrease and degradation of the tropical forest affects not only the production of timber but also the global environment. Environmental changes must be initiated by forest harvesting. The felled trees are all large emergents with wide crowns, and when they fall they destroy a considerable amount of the forest's standing trees. Many seedlings are destroyed after harvesting because the tractor trail is constructed at the center of seedling distribution. Severe variations of changes in soil properties are caused by the removal or the deposition of topsoil by a tractor. Carbon and nitrogen loss from topsoil are estimated about 19.1 and 0.05 ton/ha respectively. Seedings and saplings before harvesting can not be expected to grow and alternate dominant individuals. However, tropical rain forest plays a key role in maintaining the global carbon balance. Rehabilitation of logged over forest or afforestation of degraded land must be applied using adequate silvicultural treatments.  相似文献   

12.
Tree species diversity was measured in a network of very small galleryforests within the Mountain Pine Ridge savanna in Belize. Research focussed onforest patches smaller than 1 ha in size (micro-forests) and linearstrips of trees along creeks lacking interior core zones with low understoreylight levels (tree thickets). Twenty-five micro-forests and 51 tree thicketsites were sampled throughout the savanna. A total of 144 morphospecies 5cm dbh (106 in micro-forests and 117 in tree thickets) werefound, which represents 1/5 of the approximately 700 native tree species in Belize.Most (85.3%) of the species encountered are typically found in tropical rainforests and few are restricted to savanna or riparian environments. Speciesaccumulated at a much faster rate in micro-forests than in tree thickets. Onlyone species, the palm Acoelorraphe wrightii, was extremelyabundant, accounting for almost 30% of all stems. Many of the species werepresent in very low densities: 19% of all species found in micro-forests and 42%of those found in tree thickets had on average one or fewer stems per hectare. Alarge proportion of species were also found infrequently across the landscape,being present in only 36% of micro-forests and at 52% of tree thicket sites. Theresults indicate that networks of very small forest patches can contain highnumbers of species and could therefore contribute to the maintenance of regionalbiodiversity.  相似文献   

13.
In this paper, we tested four hypotheses relative to edge and shape effects on ant communities: (i) forest edges have lower species richness than the remnant core; (ii) species richness increases with distance from the edge; (iii) irregularly shaped remnants have lower species richness than more regular remnants; (iv) there is a higher similarity of species composition between edge and core in irregular than in regular remnants. We sampled litter ant communities on the edge and core of ten remnants, in Viçosa, Minas Gerais, Brazil. Species richness was larger at the forest core than at the edges, although did not increase with distance from the edge. Species richness did not vary with shape complexity. The similarity of species composition between edge and core showed a decreasing trend with remnant area, and did not vary with shape complexity. The observed differences of species richness between forest core and edge may be due to higher harshness of edges, caused by environmental changes. The absence of relationship between species richness and distance from the edge might indicate the range of edge effects, which would be smaller than the smallest distance of core sampled. Therefore, edges would affect litter-dwelling ant species richness in a distance smaller than 50 m. The observation of species composition allowed us to notice an effect of fragmentation that would not be noticed if we were considering only species richness. Edge may serve as step to generalist species, which may use it to colonise forest remnants. Furthermore, small remnants are more colonisation-prone by such species, and have a more homogeneous species composition than large remnants.  相似文献   

14.
The effects of habitat fragmentation on remnant plant populations have rarely been studied extensively using a single species. We have attempted to quantify the effects of forest fragmentation (primarily that of population size) on populations of Trillium camschatcense, a representative spring herb in the Tokachi plain of Hokkaido, Japan. In this region, intensive agricultural development over the past 100 years has divided once-large, continuous populations of this species into small, isolated fragments. Small populations generally produced fewer seeds than large populations, although this result differed between years. The level of seed production is unlikely to explain demographic structures based on life-history stages. Instead, the stage structure was better explained by population size, seedling recruitment being limited in smaller populations. This could be associated with edge effects because the stage structure in small populations corresponded well to that observed in forest edges, where altered microclimatic conditions strongly limit seedling recruitment. Small populations also experienced stochastic loss of rare alleles at allozyme loci as well as biparental inbreeding. Although one consequence of these changes is reduced fertility, the long-term effects on population growth can be controversial in long-lived forest herbs, since the negative effect on fertility may vary across years, and population growth rate may not be sensitive to changes in fertility. Further studies of long-term demography will reveal whether and how habitat fragmentation could limit population growth of remnant populations more than a century after fragmentation.  相似文献   

15.
Seed dispersal interactions involve key ecological processes in tropical forests that help to maintain ecosystem functioning. Yet this functionality may be threatened by increasing habitat loss, defaunation, and fragmentation. However, generalist species, and their interactions, can benefit from the habitat change caused by human disturbance while more specialized interactions mostly disappear. Therefore, changes in the structure of the local, within fragment, networks can be expected. Here we investigated how the structure of seed dispersal networks changes along a gradient of increasing habitat fragmentation. We analyzed 16 bird seed dispersal assemblages from forest fragments of a biodiversity-rich ecosystem. We found significant species–, interaction–, and network–area relationships, yet the later was determined by the number of species remaining in each community. The number of frugivorous bird and plant species, their interactions, and the number of links per species decreases as area is lost in the fragmented landscape. In contrast, network nestedness has a negative relationship with fragment area, suggesting an increasing generalization of the network structure in the gradient of fragmentation. Network specialization was not significantly affected by area, indicating that some network properties may be invariant to disturbance. Still, the local extinction of partner species, paralleled by a loss of interactions and specialist–specialist bird–plant seed dispersal associations, suggests the functional homogenization of the system as area is lost. Our study provides empirical evidence for network–area relationships driven by the presence/absence of remnant species and the interactions they perform.  相似文献   

16.
Ticks are obligatory parasites with complex life cycles that often depend on larger bodied vertebrates as final hosts. These traits make them particularly sensitive to local coextinction with their host. Loss of wildlife abundance and diversity should thus lead to loss of tick abundance and diversity to the point where only generalist tick species remain. However, direct empirical tests of these hypotheses are lacking, despite their relevance to our understanding of tick-borne disease emergence in disturbed environments. Here, we compare vertebrate and tick communities across 12 forest islands and peninsulas in the Panama Canal that ranged 1000-fold in size (2.6–2811.3?ha). We used drag sampling and camera trapping to directly assess the abundance and diversity of communities of questing ticks and vertebrate hosts. We found that the abundance and species richness of ticks were positively related to those of wildlife. Specialist tick species were only present in fragments where their final hosts were found. Further, less diverse tick communities had a higher relative abundance of the generalist tick species Amblyomma oblongoguttatum, a potential vector of spotted fever group rickettsiosis. These findings support the host-parasite coextinction hypothesis, and indicate that loss of wildlife can indeed have cascading effects on tick communities. Our results also imply that opportunities for pathogen transmission via generalist ticks may be higher in habitats with degraded tick communities. If these patterns are general, then tick identities and abundances serve as useful bioindicators of ecosystem health, with low tick diversity reflecting low wildlife diversity and a potentially elevated risk of interspecific disease transmission via remaining host species and generalist ticks.  相似文献   

17.
福建和溪亚热带雨林落叶的分解动态   总被引:1,自引:0,他引:1  
福建和溪亚热带雨林落叶的分解动态邵成,郑文教,林鹏(厦门大学,厦门361005)DynamicsoflitterdecompositioninHexisubtropicalrainforestofFujian¥ShaoCheng;ZhengWenji...  相似文献   

18.
Forest fragmentation in tropical ecosystems can alter nutrient cycling in diverse ways. We have analysed the effects of the forest-pasture edge on nutrient soil dynamics in a tropical deciduous forest (TDF) in Mexico. In two remnant forest fragments, both larger than 10 ha, litterfall, litter and soil samples associated to the tree Caesalpinia eriostachys were collected at five distances from the pasture edge into the inner forest (10 m in the pasture and 0–10, 30–40, 70–80 and 100–110 m towards the forest interior). We measured the concentrations of carbon (C), nitrogen (N) and phosphorus (P) in litterfall, surface litter and soil, and soil microbial C (Cmic) and microbial N (Nmic). Soil nutrient concentrations and Cmic and Nmic were lower in the pasture soils than in the forest soil samples. Total C and N pools, and Cmic and Nmic in the pasture were lower than in the forest. In contrast, net N immobilization and the increase in Nmic from rain to dry season increased from the edge to the inner forest. Soil P concentration was lower in the pasture and at the first distance class in the forest margin (0–10 m) than in the sites located further into the forest, while litter P concentration had the inverse pattern. Litterfall P was also reduced near the edge and increased towards the forest interior. As a consequence, litterfall C:P and N:P ratios decreased from the edge to the inner forest. These results suggest that the forest–pasture edge disrupts P dynamics within the first 10 m in the forest. Thus, plants' use of nutrients and productivity could be altered in the edge of fragmented forests.  相似文献   

19.
Insects exhibit a variety of population-level responses to forest fragmentation, ranging from population increase to extinction. However, the biological attributes that underlie differences in extinction vulnerability among insects have been little-studied. Using the frugivorous butterfly community of tropical dry forest in Venezuela, we studied body size, population density and colonization ability as attributes that might underlie the range of responses of insects to forest fragmentation. The study was carried out in a set of forest fragments in the reservoir Lago Guri, formed by the damming of the Caroni River in eastern Venezuela. Results show that larger butterfly species were more vulnerable to extinction from habitat fragments than smaller ones. Rarer species were not more vulnerable to extinction, showing that rarity may not be an important correlate of vulnerability to extinction amongst insects. Contrary to expectation, faster-flying species were more and not less vulnerable to extinction from small habitat fragments. We speculate on the possible reasons for the observed patterns in extinction vulnerability using additional observations on behavioural patterns and larval host plant distributions of some of the butterfly species.  相似文献   

20.
Forest edges created by scattered-patch clear-cutting have become common in tropical montane cloud forests in the highlands of Chiapas, Mexico. It was hypothesised that forest edges may influence regeneration of oak species, which are canopy dominants in these forests, by affecting the activities of small mammal species. Acorns of different oak species varying in germination timing were offered to predators and/or dispersers at different positions along replicated forest edges during 2 consecutive years. We investigated the effects of (1) edge type (hard and soft), (2) distance from the edge (0, 15, 30, 45 and 60 m inside forest fragments) and (3) oak species, on the rate of acorn removal mainly by small mammals. During a non-masting year, acorn removal was affected by the interaction of edge type and distance from the edge (P<0.05), with acorn removal being highest near hard edges compared to adjacent forest interiors. As predicted, acorn removal was greater along soft (100%) than along hard edges (82%), but this pattern was recorded only during the non-masting year. This study partly supports previous studies of rodents preferentially consuming acorns with early germination rather than acorns exhibiting dormancy, however these patterns may change with variation in acorn abundance. These results suggest that patch clear-cutting affects regeneration processes within forest fragments by influencing the activities of small mammals, but the nature of this effect also depends on acorn abundance and the characteristics of the forest edge created.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号