首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptin, the ob gene product, has been implicated in the initiation of puberty in mice and humans. However, it is not yet clear whether leptin also plays a pivotal role in promoting sexual maturation in rats. Based on the assumption that circulating leptin levels would increase during the peripubertal period if this hormone triggers puberty, we examined the developmental profile of plasma leptin from neonatal (day 1) through adult (day 85) age in both male and female rats and simultaneously monitored several important indices of pituitary-gonadal function. A significant elevation of plasma leptin during the peripubertal period was not observed in either male or female rats. Although this finding may not support leptin as a humoral factor triggering puberty, we observed a rise in leptin in both sexes from the second postnatal week, which clearly preceded the first significant elevations of luteinizing hormone and gonadal steroids. Therefore, it is still possible that leptin may play a role in promoting sexual maturation in rats of both sexes already from an early postnatal period. It seems that the role for leptin in sexual development is permissive, but not decisive, in rats.  相似文献   

2.
Dearth RK  Hiney JK  Dees WL 《Peptides》2000,21(3):387-392
Recent data generated from adult male and female rats indicates that leptin is capable of stimulating luteinizing hormone (LH) secretion via a hypothalamic action. Consequently, we hypothesized that this peptide may similarly play a role in controlling LH secretion during late juvenile and peripubertal development; hence, contributing to hypothalamic-pituitary function during sexual maturation. Therefore, this study was conducted to determine if leptin is capable of stimulating LH release during this critical time of development and, if so, to determine whether this action is due to an effect at the hypothalamic level. Results showed that leptin, when administered directly into the brain third ventricle (3V), can stimulate (P < 0. 01) LH release in late juvenile animals at doses of 0.01-1.0 microg. A higher dose of 10 microg was ineffective in stimulating LH release. Immunoneutralization of luteinizing hormone-releasing hormone (LHRH) via 3V administration of LHRH antiserum to late juvenile animals indicated a hypothalamic site of action, since the leptin-induced LH release was blocked in the animals that received anti-LHRH, but not in the control animals that received normal rabbit serum. Leptin did not significantly stimulate LH release from animals in first proestrus, estrus, or diestrus. We also report that the serum levels of leptin increase (P < 0.05) during the late juvenile period of development, then decrease (P < 0.05) once the animal enters the peripubertal period. Collectively, our results show that leptin is capable of acting centrally to stimulate LH release, but only during late juvenile development; thus, we suggest the peptide likely plays a facilitatory role on late juvenile LH secretion, but does not drive the LHRH/LH releasing system to first ovulation and hence, sexual maturity.  相似文献   

3.
The influence of age, weaning, season of the year and body weight on the peripheral levels of progesterone, oestradiol-17β and luteinizing hormone (LH) were studied during neonatal, perinatal and peripubertal periods in buffalo heifers. The buffalo heifers exhibited oestrus only after 30 months of age and had higher levels of LH and oestradiol-17β and a lower level of progesterone on the day of oestrus. The progesterone concentration was affected significantly (P < 0.01) by different seasons, by weaning (P < 0.05) and varied between pubertal and neonatal periods (P < 0.01), whereas the oestradiol-17β level was affected significantly (P < 0.01) by weaning and varied at different seasons and with body weight. However, the LH concentration was greater during the neonatal period than the pre- and peripubertal periods and changed significantly (P < 0.01) between groups of ages and body weights. The results suggest that increases in the levels of oestradiol-17β and progesterone after 30 months of age are probably indicative of the onset of puberty in buffalo heifers. However, a further increase in oestradiol-17β, LH, and a decrease in progesterone are essential for oestrus and cyclicity to be exhibited in buffalo heifers.  相似文献   

4.
Coeliac disease, daily more frequently diagnosed in our population, involves many organs also in oligosymptomatic patients and with an adequate nutritional regime. Possible endocrine implications include failure to thrive, pubertal delay and reproduction diseases due to deregulation of GH, FSH and LH secretion. Leptin, an adipose tissue hormone, can be decreased as well and its deficiency could be related to growth and puberty anomalies. We studied 14 asymptomatic coeliac patients in peripubertal age (7.5-13.8 years) and tested their leptin levels in order to correlate them with endocrine and anthropometric data. Before the diet was started leptinaemia (M+/-DS) was: 4.94+/-5.53 ng/ml. In 10/14 patients (71%) leptinaemia was相似文献   

5.
Leptin, the ob gene product, is involved in the regulation of body weight in rodents, primates and humans. It provides a molecular basis for the lipostatic theory of the regulation of energy balance. White adipose tissue and placenta are the main sites of leptin synthesis. There is also evidence of ob gene expression in brown fat. Leptin seems to play a key role in the control of body fat stores by coordinated regulation of feeding behaviour, metabolic rate, autonomic nervous system regulation and body energy balance. Apart from the function of leptin in the central nervous system on the regulation of energy balance, it may well be one of the hormonal factors that signal to the brain the body's readiness for sexual maturation and reproduction. During late pregnancy and at birth when maternal fat stores have been developed, leptin levels are high. During these developmental stages leptin could be a messenger molecule signalling the adequacy of the fat stores for reproduction and maintenance of pregnancy. At later stages of gestation leptin could signal the expansion of fat stores in order to prepare the expectant mother for the energy requirements of full-term gestation, labour and lactation. Leptin serum concentrations change during pubertal development in rodents, primates and humans. In girls, leptin serum concentrations increase dramatically as pubertal development proceeds. The pubertal rise in leptin levels parallels the increase in body fat mass. In contrast, leptin levels increase shortly before and during the early stages of puberty in boys and decline thereafter. Testosterone has been found to suppress leptin synthesis by adipocytes both in vivo and in vitro. The decline of leptin levels in late puberty in boys accompanies increased androgen production during that time and most likely reflects suppression of leptin by testosterone and a decrease in fat mass and relative increase in muscle mass during late puberty in males. This overview focuses on those topics of leptin research which are of particular interest in reproductive and adolescent medicine.  相似文献   

6.
The brown hare, Lepus europaeus, has a mating season which extends from January to September. Adult males exhibit pronounced seasonal changes in the reproductive tract which are associated with changes in LH secretion. Maximum plasma levels of immunoreactive LH occur between March and June and minimal levels in the autumn non-mating period from September to December; this seasonal cycle in gonadotrophin output is reflected by the appropriate changes in the secretion of testosterone from the testes and in the activity of the accessory sex glands. Juvenile animals reach puberty only during the adult mating season, and the age of puberty thus varies with the date of birth. Males born before May reach puberty and become fertile at 3 months of age, while those born from May to July grow to a mature body size during the autumn non-mating season but puberty is delayed for several months. Since some animals experiencing delayed puberty were found to have elevated plasma levels of LH and testosterone, it is concluded that puberty is not completely suppresed by the environmental effects of the autumn, but that the developmental process is prolonged, resulting in the juveniles being synchronized with the adults in their reproductive activity.  相似文献   

7.
This report provides evidence that an increment in serum gonadotropin levels occurs at puberty in the sheep and that this reflects the critical hormonal event culminating in first ovulation in this species. Blood samples were collected from 6 female lambs at 4-h intervals for a period of approximately 2 mo around the expected time of puberty (32 wk of age) until behavioral estrus was observed and ovulation was verified by assay of serum progesterone. Patterns of circulating LH, FSH, progesterone, and estradiol concentrations were characterized during the peripubertal period for each lamb. A rise in serum levels of both LH and FSH began approximately 7-10 days before the first preovulatory surge of gonadotropins. Although the increase in gonadotropin levels occurred gradually over several days, serum estradiol levels rose only during the final 40-60 h prior to the preovulatory surge of gonadotropin. Serum progesterone profiles revealed, however, that normal (14-16-day) luteal phases were induced in only 2 of 6 females as a result of the first surge. In four lambs, a short luteal phase of 2.5 days' duration occurred, which was followed by another estradiol rise and a preovulatory surge that then resulted in a full luteal phase of 14 days' duration. These data demonstrate clearly that the precipitating event at puberty in the female sheep is an increase in circulating gonadotropin levels and that the estradiol secreted from the newly stimulated follicle provides the signal for the first preovulatory surge.  相似文献   

8.
The aim of this study was to determine whether the decline in oestradiol inhibition of circulating luteinizing hormone (LH) and follicle-stimulating hormone (FSH) during the peripubertal period of heifers is associated with a change in opioid modulation of LH and FSH secretion. Opioid inhibition of LH secretion was determined by response to administration of the opioid antagonist naloxone. Prepubertal heifers (403 days old) were left as intact controls, ovariectomized or ovariectomized and chronically administered oestradiol. Control heifers were used to determine time of puberty. Three weeks after ovariectomy, four doses of naloxone (0.13-0.75 mg kg-1 body weight) or saline were administered to heifers in the treatment groups in a latin square design (one dose per day). Blood samples were collected at intervals of 10 min for 2 h before and 2 h after administration of naloxone. This procedure was repeated four times at intervals of 3 weeks during the time intact control heifers were attaining puberty. All doses of naloxone induced a similar increase in concentration of serum LH within a bleeding period. During the initial bleeding period (before puberty in control heifers), administration of naloxone induced an increase in LH concentration, but the response was greater for heifers in the ovariectomized and oestradiol treated than in the ovariectomized group. At the end of the study when control heifers had attained puberty (high concentrations of progesterone indicated corpus luteum function), only heifers in the ovariectomized and oestradiol treated group responded to naloxone. Opioid inhibition of LH appeared to decline in heifers during the time control heifers were attaining puberty. Heifers in the ovariectomized group responded to naloxone at the time of administration with an increase in FSH, but FSH did not respond to naloxone at any other time. Administration of naloxone did not alter secretion of FSH in ovariectomized heifers. These results suggest that opioid neuropeptides and oestradiol are involved in regulating circulating concentrations of LH and possibly FSH during the peripubertal period. Opioid inhibition of gonadotrophin secretion appeared to decline during the peripubertal period but was still present in ovariectomized heifers treated with oestradiol after the time when age-matched control heifers had attained puberty. We conclude that opioid inhibition is important in regulating LH and FSH in circulation in heifers during the peripubertal period. However, opioids continue to be involved in regulation of circulating concentrations of LH after puberty.  相似文献   

9.
Male rats castrated before puberty (when 26 days of age) showed a progressively decreasing susceptibility to the inhibitory effects of morphine (5 mg/kg) upon LH secretion for up to 28 days after gonadectomy (approximately 100%, 40% and 10% inhibition at 5, 12 and 28 days after castration), but thereafter morphine again caused approximately 50% reduction in serum LH values; the minimum inhibition found at 28 days after castration (age 54 days) occurred at the time at which male rats normally reach puberty. When rats were castrated at 59 days of age, morphine maximally suppressed serum LH concentrations (to less than 70%) 2 and 5 days after castration, but had no effect thereafter. In prepubertal castrates, testosterone replacement between Days 26 and 50 of life resulted in responses to morphine similar to those found in rats castrated after puberty, i.e. serum LH levels were not reduced. Morphine significantly reduced LH levels in prepubertal castrates given testosterone after 60 days of age. Treatment with morphine consistently elevated serum prolactin concentrations (greater than 100%) in castrated rats of all ages, regardless of the time elapsed after gonadectomy. These results indicate a transient fall in the inhibitory opioidergic tone upon LH secretion as the normal age of puberty approaches, that the ability of opiates to alter LH release in adulthood may depend upon testicular steroids secreted during the peripubertal period, and that the LH responses do not reflect general changes in the neuroendocrine response to opiates after castration since the prolactin response to morphine remains intact in rats castrated before and after puberty.  相似文献   

10.
The effects of maternal 50% food restriction (FR) during the last week of gestation and/or lactation on pituitary-gonadal axis (at birth and weaning), on circulating levels of leptin (at weaning), and on the onset of puberty have been determined in rats at birth and at weaning. Maternal FR during pregnancy has no effect at term on the litter size, on the basal level of testosterone in male pups, and on the drastic surge of circulating testosterone that occurs 2 h after birth. At weaning, similar retardation of body growth is observed in male and female pups from mothers exposed to FR. This undernutrition induces the most drastic effects when it is performed during both gestation and lactation or during lactation alone. Drastic retardation of testicle growth with reduction of cross-sectional area and intratubular lumen of the seminiferous tubules is observed in male pups from mothers exposed to undernutrition during both gestation and lactation or during lactation alone. Maternal FR during the perinatal period reduces circulating levels of FSH in male pups without affecting LH and testosterone concentrations. Maternal FR does not affect circulating levels of LH, estradiol, and progesterone in female pups. Female pups from mothers exposed to FR during both gestation and lactation show a significant increase of plasma FSH as well as a drastic retardation of ovarian growth. The follicular population was also altered. The number of antral follicles of small size (vesicular follicles) was increased, although the number of antral follicles of large size (graafian follicles) was reduced. Maternal FR occurring during both late gestation and lactation (male and female pups), during lactation alone (male and female pups), or during late gestation (female pups) induces a drastic reduction of plasma leptin and fat mass in pups at weaning. The onset of puberty is delayed in pups of both sexes from mothers exposed to FR during lactation and during both gestation and lactation. In conclusion, these data demonstrate that a perinatal growth retardation induced by maternal FR has long-term consequences on both size and histology of the genitals, on plasma gonadotropins and leptin levels, on fat stores at weaning, and on the onset of puberty.  相似文献   

11.
In order to study the mechanisms by which melatonin modulates sexual development, 5-day-old female Wistar rats have been treated with a single s.c. injection of melatonin, 3 h before the darkness onset. Criteria for sexual development were the age of vaginal opening and the circulating levels of prolactin, LH, FSH and estradiol. Also, pineal melatonin content was measured. There was a precocious puberty (P less than 0.01) in melatonin-treated rats measured by the age of the vaginal opening. An increase in the number of estrous smears over the whole period studied was observed in melatonin-treated animals as compared to controls. Along with these modifications, there was decrease in pineal melatonin content and serum prolactin levels, on day 21 of life (P less than 0.05), with an increase in both parameters on day 30 of age, in melatonin-treated rats as compared to controls, with no modifications at any other time studied. No differences were detected for serum LH levels considering the whole period studied for both groups. There was a faster decrease in plasma FSH levels with age in melatonin-treated animals than in controls. Serum estradiol levels were decreased in the peripubertal period in melatonin-treated rats as compared to controls. All these data suggest that the modifications induced by neonatal melatonin administration on prolactin, FSH and estradiol could be responsible for the precocious puberty shown in this study.  相似文献   

12.
Leptin, the product of the ob gene, has been proposed as a metabolic signal that regulates the secretion of GnRH/LH. This may be critical during prepubertal development to synchronize information about energy stores and the secretion of GnRH/LH. This study aimed to assess the effect of food restriction on the episodic secretion of leptin and LH in young female sheep. Five 20-week-old prepubertal females were fed a low-level diet for 10 weeks to maintain the body weight. Control females of the same age received food ad libitum. Blood samples were collected at 10-min intervals for six hours at 20, 26, and 30 weeks of age, and plasma leptin, LH, insulin and cortisol concentrations were measured. In the control group, no changes were found in pulsatile LH secretion characteristics. Mean LH concentrations and LH amplitude were lower in the food-restricted group than in the control group at 26 and 30 weeks of age. In the control group, pulsatile leptin secretion did not change. When compared to control lambs of the same age, the food-restricted group showed lower mean plasma leptin concentrations, pulse amplitude and plasma insulin levels, after 6 weeks of restriction (week 26), although by week 30, plasma leptin concentrations and plasma insulin rose to those of the control group. Leptin pulse frequency did not change, nor did mean plasma levels of insulin in the control group at any age studied. Mean plasma concentration of cortisol did not change within or between groups. These data suggest that plasma leptin concentrations may not be associated with the onset of puberty under regular feeding and natural photoperiod in lambs. Prolonged food restriction, however, induces metabolic adaptations that allow an increase of leptin during the final period, probably related to the development of some degree of insulin resistance.  相似文献   

13.
It was suggested that an early increase in gonadotrophin secretion in calves aged between 6 and 24 weeks might be critical for initiating developmental changes culminating in puberty. An early rise in luteinizing hormone (LH) release appears to be caused by an increase in LH pulse frequency in bull calves and by an increase in LH pulse amplitude in heifer calves. Previously we have found differences in the characteristics of the LH rise between prepubertal beef calves born in spring or fall; however, age at puberty was not affected by season of birth. Here we report the LH/FSH secretory patterns in prepubertal bull and heifer calves (Hereford x Charolais), born in March or April, respectively (i.e., early or late during the spring calving season; six animals of each sex born at each time). The bull calves of both groups reached puberty (defined as an attainment of scrotal circumference of >or=28 cm) at 43.2+/-1.3 weeks of age (P>0.05). Age at puberty for March- and April-born heifer calves (defined as the age at which serum progesterone concentrations first exceeded 0.4 ng/ml) averaged 56.0+/-1.4 weeks (P>0.05). Based on blood samples taken weekly from birth to 26 weeks of age, and then every other week until puberty, bull calves born in March exceeded April-born bull calves in mean serum LH concentrations at 6, 10 and 12 weeks of age (P<0.05). Mean FSH concentrations were greater (P<0.05) in March-born compared to April-born bull calves from 34 to 32 weeks before puberty. Mean serum LH (at 40, 42 and 56 weeks) and FSH concentrations (at 2, 10, 20, 22-26, 30 and 56 weeks of age) were greater (P<0.05) in heifer calves born in April than March. On the basis of frequent blood sampling (every 12 min for 10 h), heifer calves born in April exceeded March-born animals in mean LH and FSH concentrations, at 5 and 25 weeks, and LH pulse frequency, at 5, 10 and 25 weeks of age (P<0.05). None of the parameters of LH secretion (i.e., mean concentrations of LH, LH pulse frequency and amplitude based on frequent blood collection) differed between March- and April-born bull calves in this study (P>0.05). In summary, March-born bull calves had greater mean serum LH and FSH concentrations prior to 24 weeks of age than April-born calves. April-born heifer calves had greater mean serum concentrations of LH and FSH but this difference was not confined to the early postnatal period. Although there were significant differences in absolute amounts of LH secreted, there were no differences in the frequency of LH secretory pulses amongst March- and April-born bull calves and no differences in LH pulse amplitude in heifer calves born in March or April. As these particular parameters of LH secretion, as well as age at puberty, are not affected by the time or season of birth, they may be primary hormonal cues governing sexual development in bulls and heifers, respectively.  相似文献   

14.
The discovery of leptin has sparked a rapidly growing number of publications concerning the role of leptin in the regulation of body adiposity, feeding, and reproductive system in mammals. To date, there have been no reports on the presence of leptin-related peptide, and functional studies on the role of leptin remain limited in fishes. We investigated the effect of mouse recombinant leptin on basal and sea bream (sb) GnRH-induced LH release from dispersed pituitary cells obtained from male European sea bass (Dicentrarchus labrax) at different stages of sexual development. The potential interaction of leptin with the porcine neuropeptide Y (pNPY), known to play a dual role in feeding and reproduction in vertebrates, was also investigated. High doses of leptin (10(-8)-10(-6) M) and/or pNPY (0.1 and 1 nM) had different effects on LH release at various stages of sexual development. Porcine NPY alone was weakly effective on basal LH release, but it enhanced LH release induced by leptin (10(-6) M) in late prepuberty but not in early postpuberty. Additive or inhibitory effects of leptin were observed on sbGnRH-induced LH release depending on sbGnRH dose and stage of sexual development. The direct action of leptin on LH release at the pituitary level in sea bass suggests that leptin is a regulator of the reproductive system in fishes.  相似文献   

15.
Our working hypotheses for this study were that 1) the profile of intrapituitary LH and FSH isoforms would be shifted toward acidic forms as sexual maturation progresses in the bovine female; and 2) concentration of 17 beta-estradiol (E2) in circulation during sexual maturation would be a major factor modulating the percentage of the more acidic isoforms. In addition, the biological-immunoreactive (B:I) ratios of each isoform of LH were evaluated at selected stages of sexual maturation. Heifers (7 mo of age) were assigned to one of three treatment groups: 1) ovariectomized (OVX; n = 16); 2) OVX and administered E2 (OVXE; n = 16); or 3) ovary-intact (INTACT; n = 14). Pituitaries were collected from heifers in each group at an estimated 120 days (prepubertal) of 25 days before puberty (peripubertal). A fourth group of 6 heifers remained intact (postpubertal INTACT) to determine time of puberty during the experimental period. Pituitaries of heifers assigned to the postpubertal INTACT group were collected during the follicular phase of the first or second estrous cycle postpuberty. Pituitaries were used for determination of relative amounts of gonadotropin isohormones. Tissue extracts of the pituitaries were chromatofocused on pH 10.5-4.0 gradients. The LH of all pituitaries resolved into thirteen isoforms that were designated isoforms A-L, and S, with isoform A the most basic form. Isoforms F and G (basic pH range) were the predominant isoforms of each chromatofocusing profile and comprised 50-60% of the immunoreactive LH. Isoforms J and K were the major isoforms eluting in the acidic pH range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The fundamental aspects of the hypothalamic luteinizing hormone-releasing hormone (LHRH)(1) [1]pulse generator-pituitary gonadotrophin-gonadal apparatus in mammals have striking commonalities. There are, however, critical, substantive differences in the neuroendocrinology of puberty among species. The onset of puberty in the human is marked by an increase in the amplitude of LH pulses, an indirect indicator of the increase in amplitude of LHRH pulses. The hypothalamic LHRH-pituitary gonadotrophin complex is functional by at least 0.3 gestation in the human foetus; the sex difference in the fetal and neonatal pattern of LH and FSH secretion is an apparent consequence of imprinting of the fetal hypothalamus-pituitary-gonadotropin apparatus by fetal testosterone. Until about 6 months of age in boys and 12-24 months in girls, the testes and ovaries respond to the increased LH in boys and follicle-stimulating hormone (FSH) in girls by secreting testosterone and oestradiol, respectively, reaching levels that are not again achieved before the onset of puberty. Striking features of the ontogeny of the human hypothalamic pulse generator are: (1) its development and function in the foetus; (2) the continued function of the hypothalamic LHRH pulse generator-pituitary gonadotrophin-gonadal axis in infancy; (3) the gradual damping of hypothalamic LHRH oscillator activity during late infancy; (4) its quiescence during childhood - the so-called juvenile pause; (5) during late childhood the gradual disinhibition and reactivation of the LHRH pulse generator, mainly at night; (6) the increasing amplitude of the LHRH pulses, which are reflected in the progressively increased and changing pattern of circulating LH pulses, with the approach of and during puberty. The intrinsic central nervous system (CNS) mechanisms responsible for the inhibition of the LHRH pulse generator during childhood (the juvenile phase) involve the major role of an inhibitory neuronal system - the CNS inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and GABAergic neurons, as revealed by studies in the rhesus monkey by Terasawa and her associates. With the onset of puberty, the disinhibition and reactivation of the LHRH pulse generator is associated with a fall in GABAergic neurotransmission and a concomitant increase in the input of excitatory amino acid neurotransmitters (including glutamate) and possibly astroglial-derived growth factors. Despite remarkable progress over the past three decades, large gaps remain in our understanding of the neurobiological, genetic and environmental mechanisms involved in the control of the onset of puberty. The role of leptin in the control of the onset of puberty is reviewed. Severe leptin deficiency is associated with hypogonadotrophic hypogonadism; it appears that a critical level of leptin and a leptin signal is required to achieve puberty. The weight of evidence supports the hypothesis that leptin acts as one of several permissive factors and not a trigger in the onset of human puberty. The application of these advances provides a framework for the described classification of sexual precocity and delayed puberty.1 GnRH is synonymous with LHRH.  相似文献   

17.
Detailed reproductive pattern and associated endocrine characteristics have been documented in only a few species of order Chiroptera. The aim of the present study was to examine the changes in body weight, serum insulin, leptin, androstenedione and luteinizing hormone (LH) concentrations during annual ovarian cycle in the sheath-tailed bat, Taphozous longimanus. Bats were sampled over three years. Leptin, a satiety hormone produced primarily by adipose tissue, provides information to feeding center of the brain about nutritional status, fat mass, appetite and energy expenditure. The circulating concentration of leptin begins to increase from October and attains a peak in December. The peak serum leptin concentration coincides with body weight in November before winter dormancy in December. The serum leptin levels dissociate from body weight during December. The other peaks of serum leptin levels coincide with late stages of the two successive pregnancies. The serum insulin concentration begins to increase from September and attains a peak during December. The insulin concentration remains low from January to August. The circulating androstenedione concentration begins to increase in October, reaching a peak in December. This increase in androstenedione concentration correlated with the period of heavy accumulation of abdominal fat and increase in body weight. There was a sharp decline in androstenedione concentration and body weight in January. The serum LH shows peaks, in November, coinciding with the peaked body weight, the other peaks in January and May, coinciding with ovulation for the two successive pregnancies. The high leptin and insulin levels might be responsible for the maintenance of reproductive response and gonadal function during adverse environmental condition in the winter, while high androstenedione, and associated body weight along with LH might be responsible for maintaining basal gonadal function. We conclude that high leptin, androstenedione and insulin serve, as signal for the reproductive functions in that sufficient body fat are available to meet the caloric demands and maintain normal function during adverse winter conditions.  相似文献   

18.
The object of the study was to investigate the clinical and endocrine patterns of progesterone, oestradiol-17β and LH during the peripubertal period in female pigs. Crossbred gilts were penned in groups at an age of 10–12 weeks and boars were kept in adjacent pens during the entire experimental period. Daily oestrous checks started at 4.5 months of age and the gilts were slaughtered after their third heat. At the age of 4.5–5 months a permanent catheter was inserted in the cephalic vein and blood samples were collected from the gilts once daily until either the first or second oestrus. In three gilts hourly blood samples were taken during their first and second oestrus, beginning at early pro-oestrus.The gilts showed their first oestrus at the average age of 183 days. No corpora lutea from earlier ovulations were observed in gilts laparoscoped after their first detected oestrus. During the 30-day period before first oestrus the mean daily progesterone levels varied between 32 and 329 pmol/l. The average levels of oestradiol-17β varied between 15.6 and 30.8 pmol/l. There was no tendency for the oestradiol-17β level to rise before onset of first pro-oestrus. The average levels of LH varied between 0.15 and 0.94 μg/l. The statistical analyses revealed no significant relationship between the level of the hormones studied and onset of first oestrus. The mean progesterone levels during the first and second oestrous cycles were almost identical, however. Oestradiol-17β increased gradually during pro-oestrus, reaching maximum levels before onset of oestrus and thereafter decreasing sharply to values around 30 pmol/l. The oestradiol-17β levels were higher at the second than at the first pro-oestrous period. The concentrations of plasma LH rose sharply with declining plasma levels of oestradiol-17β. The duration of elevated plasma LH levels (> 1 μg/l) was, on average, 26 h and the LH levels were higher during the first oestrus than during the second oestrus. The first rise in progesterone was observed 11–29 h after the LH levels had decreased to concentrations below 1 μg/l.  相似文献   

19.
Previous studies have shown that the growth hormone (GH) axis is important for timing the later stages of puberty in female monkeys. However, it is not clear whether these growth-related signals are important for the initiation of puberty and early pubertal events. The present study, using female rhesus monkeys, used two approaches to answer this question. Experiment 1 tested the hypothesis that reduced GH secretion would blunt the rise in nocturnal LH secretion in young (17 mo; n = 7) but not older adolescent ovariectomized females (29 mo; n = 6). Reduced GH secretion was induced by treating females with the sustained release somatostatin analogue formulation, Sandostatin LAR (625 microg/kg). Morning (0900-0930 h) and evening (2200-2230 h) concentrations of bioactive LH were higher in older adolescent compared to young adolescent females. However, diurnal concentrations were not affected by the inhibition of GH secretion in either age group when compared to the placebo-treated, control condition. Experiment 2 tested the hypothesis that reduced GH secretion induced in young juvenile females would delay the initial increase in nocturnal LH secretion and subsequent early signs of puberty. In order to examine this hypothesis, puberty in control females (n = 7) was compared to those in which puberty had been experimentally arrested until a late adolescent age (29 mo) by the use of a depot GnRH analogue, Lupron (750 microg kg(-1) mo(-1); n = 7). Once the analogue treatment was discontinued, the progression of puberty was compared to a group treated in a similar fashion but made GH deficient by continuous treatment with Sandostatin LAR (n = 6). Puberty occurred as expected in control females with the initial rise in evening LH at 21 mo, menarche at 22 mo, and first ovulation at 30 mo. As expected, Lupron arrested reproductive maturation, but elevations in morning and evening LH and menarche occurred within 2 mo of the cessation of Lupron in both Lupron and Lupron-GH-suppressed females. In contrast, first ovulation was delayed significantly in the Lupron-GH-suppressed females (41 mo) compared to the Lupron-only females (36 mo). These data indicate that within this experimental model, reduced GH secretion does not perturb the early stages of puberty but supports previous observations that the GH axis is important for timing the later stages of puberty and attainment of fertility. Taken together, the data indicate that factors that reduce GH secretion may have a deleterious effect on the completion of puberty.  相似文献   

20.
Growth hormone (GH) levels increase during puberty though its role in puberty onset is still unclear. An interaction is suggested between GH and leptin, as triggering factor of puberty. To evaluate the role of GH on the timing of puberty and its relation with leptin, we centrally administered recombinant human GH (rhGH; 1 microg/day) to normally fed or food-restricted (FR) prepubertal female rats, and monitored time of vaginal opening (VO). Median time of VO was equally postponed in FR animals and in normally fed rhGH-infused rats: median time of VO was respectively 35 and 34 vs. 27 d. Central infusion of rhGH in FR rats partially restored the delay in VO. Plasma leptin levels were increased in rhGH-infused animals, normally fed or FR. Centrally infused anti-rat GH (0.6 microg/day) did not affect plasma leptin levels, but advanced median time of VO (25 vs. 28 d) in pair-fed female rats but not in ad lib-fed animals. The effects of the centrally infused compounds appear to depend on the dietary regime imposed on the prepubertal animals. Furthermore, plasma leptin levels show no direct or predictive relation to the time of VO. The data indicate an involvement of GH in puberty onset, but do not explain the mechanism employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号