首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

2.
The production of interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha (TNF-alpha) by fresh peripheral blood mononuclear cells was evaluated after exposure to human immunodeficiency virus (HIV) or purified recombinant HIV-1 envelope glycoprotein (rgp120). To exclude the role of contaminating endotoxin in this study, all media were subjected to ultrafiltration and reagents contained less than 25 pg of endotoxin per ml by Limulus assay. Under endotoxin-free conditions, no increases in IL-1 beta, IL-6, or TNF-alpha mRNA or protein were detectable in cell cultures exposed to HIV-1, HIV-2, or rgp120 (0.1 to 10 micrograms/ml), as compared with cytokine levels in mock-exposed cultures. However, concentrations of endotoxin (lipopolysaccharide) as low as 0.5 ng/ml induced significant production of mRNA and protein for these three cytokines. Preincubation of mononuclear cells with "shake" HIV-1 preparations and also mock-infected shake preparations prior to lipopolysaccharide stimulation resulted in a two- to threefold increase in IL-1 beta and TNF-alpha production. This priming effect was not observed with rgp120 (0.1 to 10 micrograms/ml) or standard HIV-1 or mock-infected supernatants, suggesting the presence of biologically active material independent of virus in the shake preparations. Our studies indicate that, in the absence of endotoxin, HIV-1, HIV-2, and HIV gp120 do not induce production of IL-1 beta, IL-6, or TNF-alpha by peripheral blood mononuclear cells.  相似文献   

3.
4.
The Norwegian group B meningococcal outer membrane vesicle (OMV) vaccine consists of outer membrane proteins (OMPs) as main antigens with significant amounts of lipopolysaccharide (LPS; 5-9% relative to protein). We have studied the ability of this OMV vaccine preparation to induce secretion of pro-inflammatory cytokines, tumour necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), interleukin 6 (IL-6), interleukin 8 (IL-8) and anti-inflammatory cytokines, interleukin 4 (IL-4), interleukin 10 (IL-10) and interleukin 13 (IL-13) in a human whole blood model. Plasma levels of TNF-alpha, IL-1beta, IL-6 and IL-8 were massively increased; mean peak levels of TNF-alpha 44 696+/-7764, IL-1beta 38 043+/-5411, IL-6 10 057+/-1619 and IL-8 30 449+/-5397 pg/ml were obtained with an OMV-LPS concentration of 1 microg/ml; corresponding levels in control plasmas were below the detection limit of the assay. Mean maximal level of IL-10 (2540+/-144 pg/ml) was obtained at OMV-LPS concentration of 10 microg/ml, after 24 h; while the level in control plasma was below detection limit. OMV-LPS did not induce release of IL-4 and IL-13 in doses from 0.001-10 microg/ml. The present results show that OMVs from meningococci have potent pro-inflammatory properties and are likely to contribute to the observed local and systemic inflammatory effects.  相似文献   

5.
High levels of the pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), are present in the gut mucosa of patients suffering form various diseases, most notably inflammatory bowel diseases (IBD). Since the inflammatory milieu can cause important alterations in epithelial cell function, we examined the cytokine effects on the expression of the enterocyte differentiation marker, intestinal alkaline phosphatase (IAP), a protein that detoxifies bacterial lipopolysaccharides (LPS) and limits fat absorption. Sodium butyrate (NaBu), a short-chain fatty acid and histone deacetylase (HDAC) inhibitor, was used to induce IAP expression in HT-29 cells and the cells were also treated +/- the cytokines. Northern blots confirmed IAP induction by NaBu, however, pretreatment (6 h) with either cytokine showed a dose-dependent inhibition of IAP expression. IAP Western analyses and alkaline phosphatase enzyme assays corroborated the Northern data and confirmed that the cytokines inhibit IAP induction. Transient transfections with a reporter plasmid carrying the human IAP promoter showed significant inhibition of NaBu-induced IAP gene activation by the cytokines (100 and 60% inhibition with IL-1beta and TNF-alpha, respectively). Western analyses showed that NaBu induced H4 and H3 histone acetylation, and pretreatment with IL-1beta or TNF-alpha did not change this global acetylation pattern. In contrast, chromatin immunoprecipitation showed that local histone acetylation of the IAP promoter region was specifically inhibited by either cytokine. We conclude that IL-1beta and TNF-alpha inhibit NaBu-induced IAP gene expression, likely by blocking the histone acetylation within its promoter. Cytokine-mediated IAP gene silencing may have important implications for gut epithelial function in the setting of intestinal inflammatory conditions.  相似文献   

6.
7.
The alveolar macrophage (AM) secretes interleukin 1beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-8 (IL-8), all of them inflammatory cytokines involved in the pathogenesis of many lung diseases. The aim of the present work was to evaluate the basal and stimulated secretion of these cytokines by human AMs. Human AMs were collected by bronchoalveolar lavage (BAL) from four healthy controls and 13 patients with diffuse interstitial lung disease (five cases of sarcoidosis, three of hypersensitivity pneumonitis and five of idiopathic pulmonary fibrosis). AMs were cultured in the presence or absence of different concentrations of lipopolysaccharide (LPS), phorbolmyristate and gamma-interferon. IL-1beta, TNF-alpha, IL-6 and IL-8 levels were measured in BAL fluid and culture supernatant using specific enzyme-linked immunosorbent assays. The substance found to stimulate the secretion of inflammatory cytokines to the greatest extent was LPS at a concentration of 10 microg/ml. Regarding the secretion of IL-1beta, four observations were of interest: basal secretion was very low; LPS exerted a potent stimulatory effect; considerable within-group variability was observed; and there were no significant differences in the comparisons among groups. With respect to TNF-alpha secretion, the results were similar. The only striking finding was the higher basal secretion of this cytokine with respect to that of IL-1beta. Regarding the secretion of IL-6, the same pattern followed by TNF-alpha was found. However, it should be stressed that the increase induced by LPS was smaller than in the two previous cytokines. Regarding the secretion of IL-8, three findings were patent: the strong basal secretion of this cytokine; the moderate increase induced by LPS; and the existence of significant differences among the different groups with respect to the stimulated secretion of this cytokine, which reached maximum values in patients with idiopathic pulmonary fibrosis. Finally, it should be noted that the pattern of cytokines observed in the BAL fluid was similar to that found in cultured AM supernatants. The pattern of inflammatory cytokine secretion by AMs differs from that of other cells of the mononuclear phagocyte system (MPS). In this sense. AMs secrete low amounts of IL-1, moderate amounts of TNF-alpha and IL-6, and high quantities of IL-8. Adherence is an important stimulus in the secretion of these molecules and LPS elicits an increased secretion inverse to the basal secretion. There is considerable individual variability in the secretion of inflammatory cytokines by the AMs of patients with interstitial lung disease and the AMs of these patients are primed in vivo for the secretion of these cytokines. The results of our study, carried out in vitro, can be extrapolated to the in vivo setting.  相似文献   

8.
Oxidatively modified low density lipoproteins (LDL) have recently been proposed to play a role in atherogenesis by promoting foam cell formation and endothelial cell toxicity. The purpose of the present study was to determine whether modified LDL could also induce macrophage release of interleukin 1 beta (IL-1 beta), a cytokine which enhances vascular smooth muscle cell proliferation, another feature of the atherosclerotic process. LDL were oxidatively modified by incubation with either Cu2+ (Cu(2+)-LDL) or human peripheral blood monocyte-derived macrophages (M-LDL). Incubation of these modified LDL with macrophages (6 x 10(6) cells/culture) resulted in a dose-dependent induction of IL-1 beta release. At 300 micrograms protein/ml, Cu(2+)-LDL and M-LDL induced 422 and 333 pg of IL-1 beta/culture, respectively. Saponified Cu(2+)-LDL and M-LDL were shown to contain 9- and 13-hydroxyoctadecadienoic acid (HODE), lipid oxidation products of linoleate. When tested for activity in macrophage culture (3 x 10(6) cells/culture), it was found that 9-HODE and 13-HODE (final concentration 33 microM) induced the release of 122 and 43 pg of IL-1 beta/culture, respectively, whereas untreated cells released only 4 pg of IL-1 beta/culture. Incubation of macrophages with cholesteryl-9-HODE also induced IL-1 beta release; however, the degree of induction of IL-1 beta release by 9-HODE or its cholesteryl ester relative to modified LDL suggests that other components in oxidized LDL may also contribute to IL-1 beta induction. 9-HODE was rapidly taken up by macrophages, and the kinetics were similar to IL-1 beta release. A 1.5- to 6-fold increase in the level of IL-1 beta mRNA was detected as little as 3-h post-9-HODE treatment. The induction of IL-1 beta release from human monocyte-derived macrophages by 9-HODE and cholesteryl-9-HODE suggests a role for modified LDL, and its associated linoleate oxidation products, in vascular smooth muscle cell proliferation.  相似文献   

9.
We have previously shown that induction of synthesis of the two major human acute phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP), can be accomplished in the human hepatoma cell line Hep 3B, in the presence of dexamethasone, either by conditioned medium from LPS-stimulated monocytes or by the combination of IL-6 and IL-1. Neither of these cytokines alone caused significant induction of either SAA or CRP. In the present study we extended our earlier observations by evaluating the role of dexamethasone, the effect of different concentrations of IL-6 and IL-1 alpha in combination, and the possible role of TNF-alpha in regulating synthesis of SAA and CRP. Dexamethasone alone had no effect on induction of SAA or CRP. Incubation of Hep 3B cells with conditioned medium from LPS-stimulated monocytes, in the absence of dexamethasone, led to modest induction of SAA or CRP, but addition of dexamethasone potentiated this response in a dose-dependent manner. Similar results were obtained for the effect of dexamethasone on the induction of SAA by IL-6 plus IL-1 alpha. Checkerboard titration of IL-6 and IL-1 alpha revealed that increases in concentration of either cytokine led to dose-related increases in synthesis of both SAA and CRP as long as a minimal amount of the other cytokine was present. TNF-alpha alone had no significant effect on synthesis of either SAA or CRP, but the combination of IL-6 plus TNF-alpha led to substantial induction of SAA. This combination was less effective than the combination of IL-6 plus IL-1 alpha. No detectable effect of IL-6 plus TNF-alpha was observed on CRP synthesis. Both combinations of cytokines, IL-6 plus IL-1 alpha, and IL-6 plus TNF-alpha, caused increased SAA mRNA accumulation that roughly paralleled increase in synthesis. These data indicate that IL-6, IL-1 alpha, TNF-alpha, and dexamethasone in various combinations are all capable of influencing synthesis of SAA in Hep 3B cells, whereas only IL-6, IL-1 alpha, and dexamethasone can influence CRP synthesis.  相似文献   

10.
11.
Perinatal infections are a risk factor for fetal neurological pathologies, including cerebral palsy and schizophrenia. Cytokines that are produced as part of the inflammatory response are proposed to partially mediate the neurological injury. This study investigated the effects of intraperitoneal injections of lipopolysaccharide (LPS) to pregnant rats on the production of cytokines and stress markers in the fetal environment. Gestation day 18 pregnant rats were treated with LPS (100 microg/kg body wt i.p.), and maternal serum, amniotic fluid, placenta, chorioamnion, and fetal brain were harvested at 1, 6, 12, and 24 h posttreatment to assay for LPS-induced changes in cytokine protein (ELISA) and mRNA (real-time RT-PCR) levels. We observed induction of proinflammatory cytokines interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha) as well as the anti-inflammatory cytokine IL-10 in the maternal serum within 6 h of LPS exposure. Similarly, proinflammatory cytokines were induced in the amniotic fluid in response to LPS; however, no significant induction of IL-10 was observed in the amniotic fluid. LPS-induced mRNA changes included upregulation of the stress-related peptide corticotropin-releasing factor in the fetal whole brain, TNF-alpha, IL-6, and IL-10 in the chorioamnion, and TNF-alpha, IL-1 beta, and IL-6 in the placenta. These findings suggest that maternal infections may lead to an unbalanced inflammatory reaction in the fetal environment that activates the fetal stress axis.  相似文献   

12.
13.
14.
15.
An early systemic response induced by magnetic resonance imaging (MRI)-guided interstitial percutaneous laser thermoablation was analyzed in 13 consecutive patients with malignant liver tumors by serum interleukin (IL)-1beta, IL-6, IL-10, tumor necrosis factor (TNF)-alpha, its receptor TNFRI, and C-reactive protein (CRP) levels up to 72h after the procedures. Only IL-6 (p=0.033) and TNFRI (p<0.001) increased statistically significantly after ablation, while the TNF-alpha, IL-1 beta, and IL-10 levels remained unchanged. The peak median CRP response was 92mg/l. There was a dose-dependent correlation between the energy used and the maximum CRP values (tau=0.68, p=0.013). MRI-guided laser thermoablation induced an early systemic inflammatory reaction with statistically significantly elevated IL-6, TNFRI, and CRP levels but not TNF-alpha or IL-10 levels and without procedure-related complications, favoring this procedure as a safe therapeutic alternative for well-selected patients with liver tumors.  相似文献   

16.
IL-9 is a Th2 cytokine that exerts pleiotropic activities on T cells, B cells, mast cells, hematopoietic progenitors, and lung epithelial cells, but no effect of this cytokine has been reported so far on mononuclear phagocytes. Human blood monocytes preincubated with IL-9 for 24 h before LPS or PMA stimulation exhibited a decreased oxidative burst, even in the presence of IFN-gamma. The inhibitory effect of IL-9 was specifically abolished by anti-hIL-9R mAb, and the presence of IL-9 receptors was demonstrated on human blood monocytes by FACS. IL-9 also down-regulated TNF-alpha and IL-10 release by LPS-stimulated monocytes. In addition, IL-9 strongly up-regulated the production of TGF-beta1 by LPS-stimulated monocytes. The suppressive effect of IL-9 on the respiratory burst and TNF-alpha production in LPS-stimulated monocytes was significantly inhibited by anti-TGF-beta1, but not by anti-IL-10Rbeta mAb. Furthermore, IL-9 inhibited LPS-induced activation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases in monocytes through a TGF-beta-mediated induction of protein phosphatase activity. In contrast, IL-4, which exerts a similar inhibitory effect on the oxidative burst and TNF-alpha release by monocytes, acts primarily through a down-regulation of LPS receptors. Thus, IL-9 deactivates LPS-stimulated blood mononuclear phagocytes, and the mechanism of inhibition involves the potentiation of TGF-beta1 production and extracellular signal-regulated kinase inhibition. These findings highlight a new target cell for IL-9 and may account for the beneficial activity of IL-9 in animal models of exaggerated inflammatory response.  相似文献   

17.
Cytokines released at sites of inflammation and infection can alter the normal processes of cartilage turnover, resulting in pathologic destruction or formation. Interleukin (IL)-1beta plays a central role in the pathophysiology of cartilage damage and degradation in arthritis. In the present study, we examined the effect of IL-1beta on the expression of IL-1beta, IL-6, IL-8, IL-11, tumor necrosis factor-alpha (TNF-alpha), and their receptors in human chondrocytes. The cells were cultured either with or without 100 U/ml of IL-1beta for up to 28 days. The level of expression of the cytokines and their receptors was estimated by determining mRNA levels using real-time PCR or by determining protein levels using ELISA. The expression of IL-1beta, IL-8, and TNF-alpha markedly increased in the presence of IL-1beta after day 14 of culture. The expression of IL-6 and IL-11 increased greatly in the presence of IL-1beta on day 1 and after day 14 of culture. The expression of IL-1beta, IL-8, IL-11, and TNF-alpha receptors significantly decreased in the presence of IL-1beta after day 14 of culture, whereas the expression of IL-6 receptor significantly increased. The expression of these cytokines, except for IL-6, decreased with the addition of human IL-1 receptor antagonist. These results suggest that IL-1beta promotes the resolution system of cartilage matrix turnover through an increase in inflammatory cytokine production by chondrocytes and that it also may promote the autocrine action of IL-6 through an increase in IL-6 receptor expression in the cells.  相似文献   

18.
Both IL-1 alpha and IL-1 beta and TNF-alpha induced a time- and dose-dependent release of authentic PGE2 from cultured human glomerular mesangial cells (HMC). This release became significant only after a 4- to 6-h lag phase, and was abolished by inhibition of protein synthesis, and was not related to cell proliferation. Combinations of IL-1 and TNF-alpha when added simultaneously to HMC resulted in a dose-dependent synergistic increase in PGE2 production. These stimulatory effects were specifically inhibited by anticytokine antibodies and the synergistic effect required the simultaneous presence of both IL-1 and TNF-alpha. Arachidonic acid (AA) release experiments and measurement of cyclooxygenase activity, revealed that while both were increased by IL-1 beta and TNF-alpha alone (IL-1 beta greater than TNF-alpha), combinations of IL-1 beta and TNF-alpha resulted in only additive increases in AA release and cyclooxygenase activity. Taken together, these data suggest that stimulation of PGE2 in HMC, by combinations of these cytokines, is not rate limited by AA release or cyclooxygenase activation, but may be related to the induction of the distal enzymes controlling specific PG synthesis.  相似文献   

19.
Persistent expression of pro-inflammatory cytokines is believed to play a major role in the pathogenesis of chronic lung disease (CLD) in premature infants. Inhibition of pro-inflammatory cytokine production in the lungs of preterm newborns may result in the attenuation of CLD. Curcumin is a naturally occurring phenolic compound derived from the food spice tumeric with broad based in vitro anti-inflammatory properties. In this study lung inflammatory cells from preterm newborns at risk for the development of CLD were derived via modified broncho-alveolar lavage and stimulated ex vivo with lipopolysaccharide (LPS) (10 ng/ml). Curcumin was added to these cultures at 0, 0.5 and 20 uM concentrations. Pro-inflammatory cytokine, TNFalpha, IL-1beta and IL-8 protein was measured from the culture supernatants 12 hours post culture. For control, adult peripheral blood mononuclear cells (PBMC) were cultured under the same conditions. Both neonatal lung inflammatory cells and adult PBMC produced high levels of pro-inflammatory cytokines in response to LPS. Curcumin produced significant inhibition of IL-1beta and IL-8 but minimal inhibition of TNFalpha expression by preterm lung inflammatory cells at 20 uM concentrations. Adult PBMC expression of IL-8 was significantly inhibited by curcumin at 20 uM concentrations. Therefore, curcumin inhibits pro-inflammatory cytokine production (TNFalpha, IL-1beta and IL-8) by lung inflammatory cells ex vivo. Pathways involved with curcumin regulation of these cytokines are developmentally intact and functional in premature infants. Curcumin may be effective as a therapeutic agent in the attenuation of CLD.  相似文献   

20.
In this study we investigated the effect of acute-phase levels of C-reactive protein (CRP) on cytokine production by pulmonary macrophages in the presence or absence of pulmonary surfactant. Both human alveolar and interstitial macrophages as well as human surfactant were obtained from multiple organ donor lungs. Precultured macrophages were stimulated with LPS alone or together with IFN-gamma in the presence or absence of CRP, surfactant, and combinations. Releases of TNF-alpha and of IL-1beta to the medium were determined. We found that CRP could modulate lung inflammation in humans by decreasing the production of proinflammatory cytokines by both alveolar and interstitial macrophages stimulated with LPS alone or together with IFN-gamma. The potential interaction between CRP and surfactant phospholipids did not overcome the effect of either CRP or surfactant on TNF-alpha and IL-1beta release by lung macrophages. On the contrary, CRP and pulmonary surfactant together had a greater inhibitory effect than either alone on the release of proinflammatory cytokines by lung macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号