首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adenylate cyclase activity in platelet membrane preparations was measured in the presence of prostaglandin E1 (PGE1), GTP and a non-hydrolysable analogue of GDP, guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). A dose-dependent inhibition of adenylate cyclase by GDP[beta S] was observed that could be reversed either by adding increased amounts of GTP or of PGE1.  相似文献   

3.
Adenylate cyclase activity associated with particulate preparations from rat, mouse, rabbit, and dog liver is stimulated 2-to 5-fold by prostaglandin E1 (PGE1). This stimulation is dependent upon the presence of guanosine-5′-triphosphate (GTP). Prostaglandins F1a and F2a do not alter the enzymatic activity under these same conditions. Optimal concentrations of PGE1 + GTP stimulate rat liver adenylate cyclase more than glucagon alone, but less than glucagon + GTP. Activity measured with glucagon + GTP is not affected by addition of PGE1. Stimulation from PGE1 + GTP is increased by glucagon to the same level measured with glucagon + GTP.  相似文献   

4.
Mammalian adenylate cyclases are predicted to possess complex topologies, comprising two cassettes of six transmembrane-spanning motifs followed by a cytosolic, catalytic ATP-binding domain. Recent studies have begun to provide insights on the tertiary assembly of these proteins; crystallographic analysis has revealed that the two cytosolic domains dimerize to form a catalytic core, while more recent biochemical and cell biological analysis shows that the two transmembrane cassettes also associate to facilitate the functional assembly and trafficking of the enzyme. The older literature had suggested that adenylate cyclases might form higher order aggregates, although the methods used did not necessarily provide convincing evidence of biologically relevant events. In the present study, we have pursued this question by a variety of approaches, including rescue or suppression of function by variously modified molecules, coimmunoprecipitation and fluorescence resonance energy transfer (FRET) analysis between molecules in living cells. The results strongly suggest that adenylate cyclases dimerize (or oligomerize) via their hydrophobic domains. It is speculated that this divalent property may allow adenylate cyclases to participate in multimeric signaling assemblies.  相似文献   

5.
6.
Adenylate cyclase in cultured human fibroblasts is activated by prostaglandin E1 (PGE1) or beta-adrenergic agonists, e.g., isoproterenol, and inhibited by muscarinic agonists. Incubation with PGE1 reduced adenylate cyclase responsiveness to both PGE1 and isoproterenol; this so-called heterologous desensitization is believed to result from impaired function of the stimulatory guanyl nucleotide-binding protein of the cyclase complex. The effect of heterologous desensitization by PGE1 on inhibition of adenylate cyclase by the muscarinic agonist oxotremorine was examined. Muscarinic inhibition of basal and isoproterenol-stimulated cAMP accumulation was attenuated following exposure to PGE1; the concentration of oxotremorine required for half-maximal inhibition of cAMP accumulation was increased. In both intact cells and membrane preparations the number of binding sites for [3H]scopolamine, a muscarinic antagonist, was unaltered by desensitization. Following exposure to PGE1, receptor affinity for oxotremorine, assessed by competition with [3H] scopolamine, and the guanyl nucleotide sensitivity of agonist binding were reduced. The amount of inhibitory guanyl nucleotide-binding regulatory protein available for [32P]ADP-ribosylation by pertussis toxin was unaltered by desensitization. Thus, heterologous desensitization of adenylate cyclase with the stimulatory agonist PGE1 alters sensitivity to inhibitory as well as stimulatory ligands.  相似文献   

7.
The nonionic detergent Lubrol WX showed diverse, concentration-dependent effects onbasal and stimulated adenylate cyclases. Above concentrations of 0.001-0.01% Lubrol WX, the basal activity of cyclase from Ehrlich ascites cells was inhibed about 50%, and that from rat fat cells was doubled. In both cases, hormonal sensitivity was lost at 0.01%. These effects were reversed upon dilution of the detergent. It is suggested that solubilization of adenylate cyclases at such low concentrations of Lubrol should be attempted since it is conceivable that loss of hormone sensitivity may then be reversible. Different Lubrol-type detergents may also offer centain advantages, since Lubrol PX effects were not identical with those of Lubrol WX.  相似文献   

8.
9.
Membrane vesicles can be prepared from murine lymphoid cells by nitrogen cavitation and fractionated by sedimentation through nonlinear sucrose density gradients. Two subpopulations of membrane vesicles, PMI and PMII, can be distinguished on the basis of sedimentation rate. The subcellular distribution of adenylate and guanylate cyclases in these membrane subpopulations have been compared with the distribution of a number of marker enzymes. Approximately 20-30% of the total adenylate and guanylate cyclase activity is located at the top of the sucrose gradient (soluble enzyme), the remainder of the activity being distributed in the PMI and PMII fractions (membrane-bound enzyme). More than 90% of the 5'-nucleotidase and NADH oxidase activities detected in lymphoid cell homogenates are located in PMI and PMII fractions, whereas succinate cytochrome c reductase activity is detected only in the PMII fractions. In addition, beta-galactosidase activity is distributed in the soluble and PMII fractions of the sucrose density gradients. On the basis of the fractionation patterns of these various enzyme activities, it appears that PMI fractions contain vesicles of plasma membrane and endoplasmic reticulum, whereas PMII fractions contain mitochondria, lysomes, and plasma membrane vesicles. Approximately 30-40% of the adenylate and guanylate cyclase activities in PMII can be converted to a PMI-like form following dialysis and resedimentation through a second nonlinear sucrose gradient. Adenylate and guanulate cyclases can be distinguished on the basis of sensitivity to nonionic detergents.  相似文献   

10.
We found that when 15-keto-PGE1 was added to cat blood, it was converted to 13, 14-dihydro-15-keto-PGE1 (dihydro-keto-PGE1) by a NADH-dependent enzyme associated with some formed element(s) in the blood. When PGE1 was injected into the pulmonary artery of blood-perfused lungs, the only metabolite detectable in the pulmonary venous blood was the dihydro-keto-PGE1. However, when the lungs were perfused with an artificial perfusate containing no blood cells, a small amount of 15-keto-PGE1 was detected in the venous effluent. Therefore it would appear that a blood-borne delta13 reductase was partially responsible for the conversion of PGE1 to dihydro-keto-PGE1 on passage through blood-perfused cat lungs.  相似文献   

11.
Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis   总被引:8,自引:0,他引:8  
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is a stimulus-inducible enzyme that functions downstream of cyclooxygenase (COX)-2 in the PGE2-biosynthetic pathway. Given the accumulating evidence that COX-2-derived PGE2 participates in the development of various tumors, including colorectal cancer, we herein examined the potential involvement of mPGES-1 in tumorigenesis. Immunohistochemical analyses demonstrated the expression of both COX-2 and mPGES-1 in human colon cancer tissues. HCA-7, a human colorectal adenocarcinoma cell line that displays COX-2- and PGE2-dependent proliferation, expressed both COX-2 and mPGES-1 constitutively. Treatment of HCA-7 cells with an mPGES-1 inhibitor or antisense oligonucleotide attenuated, whereas overexpression of mPGES-1 accelerated, PGE2 production and cell proliferation. Moreover, cotransfection of COX-2 and mPGES-1 into HEK293 cells resulted in cellular transformation manifested by colony formation in soft agar culture and tumor formation when implanted subcutaneously into nude mice. cDNA array analyses revealed that this mPGES-1-directed cellular transformation was accompanied by changes in the expression of a variety of genes related to proliferation, morphology, adhesion, and the cell cycle. These results collectively suggest that aberrant expression of mPGES-1 in combination with COX-2 can contribute to tumorigenesis.  相似文献   

12.
Activation of human blood platelet adenylate cyclase is initiated through the binding of prostaglandin E1 to the membrane receptors. Incubation of platelet membrane with [3H]prostaglandin E1 at pH 7.5 in the presence of 5 mM MgCl2 showed that the binding of the autacoid was rapid, reversible and highly specific. The binding was linearly proportional to the activation of adenylate cyclase. Although the membrane-bound radioligand could not be removed either by GTP or its stable analogue 5'-guanylylimido diphosphate, 150 nM cyclic AMP displaced about 40% of the bound agonist from the membrane. Scatchard analyses of the binding of the prostanoid to the membrane in the presence or absence of cyclic AMP showed that the nucleotide specifically inhibited the high-affinity binding sites without affecting the low-affinity binding sites. Incubation of the membrane with 150 mM cyclic AMP and varying amounts of prostaglandin E1 (25 nM to 1.0 microM) showed that the percent removal of the membrane-bound autacoid was similar to the percent inhibition of adenylate cyclase at each concentration of the agonist. At a concentration of 25 nM prostaglandin E1, both the binding of the agonist and the activity of adenylate cyclase were maximally inhibited by 40%. With the increase of the agonist concentration in the assay mixture, the inhibitory effects of the nucleotide gradually decreased and at a concentration of 1.0 microM prostaglandin E1 the effect of the nucleotide became negligible. These results show that cyclic AMP inhibits the activation of adenylate cyclase by low concentrations of prostaglandin E1 through the inhibition of the binding of the agonist to high-affinity binding sites.  相似文献   

13.
Prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2), derived by enzymatic oxidation of cellular dihomogammalinolenic acid (DHLA) and arachidonic acid (AA), respectively, have diverse and, at times, distinct biological actions. It has been suggested that PGE1 specifically inhibits a variety of inflammatory processes, and, in light of the potential therapeutic benefit of PGE1 and its fatty acid precursor in inflammatory disorders, there is growing interest in the biochemical mechanisms which determine the balance between PGE1 and PGE2 synthesis. Metabolic studies in this area have been hampered by the difficulties in measuring the extremely small masses of these prostaglandins which are generated in cell culture systems. We studied the regulation of PGE1 versus PGE2 synthesis using an essential fatty acid-deficient, PGE-producing, mouse fibrosarcoma cell line, EFD-1. Because EFD-1 cells contain no endogenous AA or DHLA, we were able to replete the cells with AA and DHLA of known specific activities; thus, the mass of both cellular AA and DHLA, and synthesized PGE1 and PGE2, could be accurately determined. The major finding of this study is that production of PGE2 was highly favored over production of PGE1 due to preferential incorporation of AA versus DHLA into, and release from, the total cellular phospholipid pool. Further, we correlated the selective release of AA versus DHLA from total cellular phospholipids with the selective incorporation of AA versus DHLA into specific phospholipid pools. In addition, we showed that conversion of DHLA to AA by delta 5 desaturase was enhanced by increasing the cellular mass of n-6 fatty acids and by increasing the cell proliferative activity. Together, these results indicate that the relative abundance of PGE2 versus PGE1 in vivo is not merely a function of the relative abundance of AA versus DHLA in tissues, but also relates to markedly different cellular metabolism of these two fatty acids.  相似文献   

14.
Prostaglandin (PG)E1 may play an important part in the affective disorders, with an excess being present in mania and a deficiency in depression. Platelets from manic patients produce more PGE1 than normal while those from depressive patients produce less. Ethyl alcohol stimulates PGE1 production whereas lithium inhibits it. Alcoholics will tend to have raised PGE1 concentrations while drinking, but, because precursor supplies are limited, when alcohol concentrations fall PGE1 concentrations may fall sharply leading to depression. PGE1 biosynthesis may be affected by nutritional factors including essential fatty acids, pyridoxine, vitamin C, and zinc. Nutritional approaches may be of value in both depression and alcoholism.  相似文献   

15.
M Ofuji  H Kaiya  M Nozaki  K Tsurumi 《Life sciences》1989,45(22):2135-2140
Cyclic 3',5'-adenosine monophosphate (cAMP) formation via prostaglandin E1 (PGE1)-or forskolin-stimulation were determined in washed intact platelets from 32 schizophrenic patients and 30 normal controls. Regarding basal cAMP levels in the platelets, there were no differences between schizophrenic patients and normal controls. Both PGE1-and forskolin-stimulated cAMP response reduced in platelets from schizophrenics compared with normal controls. These results suggested that platelets in schizophrenics were impaired not only in the adenylate cyclase unit per se but also extensively in the cAMP generating system coupled to a PGE1 receptor.  相似文献   

16.
2 beta,25-di(0-beta-D-glucopyranosyloxy)-16 alpha,20-dihydroxycucurbit-5-en-3,11,22-trione (cucurbitacin R glucoside--CRG), isolated from Bryonia alba roots, stimulates corticosterone secretion in the adrenal cortex of rats and augments the working capacity of mice. If rats after CRG injections were exposed to immobilization stress, the level of corticosterone in the adrenal cortex and blood plasma was not increased, like in the control groups of rats not receiving CRG. The level of prostaglandin E2 in the adrenal cortex was increased during stress and after CRG administration. These findings indicate that CRG regulates steroidogenesis by influencing the activity of prostaglandin G2-prostaglandin E2 isomerase.  相似文献   

17.
Prostaglandin E1 (PGE1) hyperpolarized the smooth muscle cells of guinea-pig ureter in normal Krebs solution and was without effect on ureters depolarized in KCl Krebs, PGE1 inhibited both electrically induced contractions and K+-induced contractures of the ureters. Conditions that favored greater tension development by the ureters, namely, high [K+] or high [Ca-2+] reduced the inhibitory effects of PGE1 on the K+-induced contractures. Depolarization of guinea-pig ureter with KCl Krebs led to an increase in radio-calcium content of the tissue over a 30 min loading period. This increase in the tissue's radio-calcium content was further increased by PGE1 but not by theophylline, PGE1 was found to have no effect on either total calcium content or the calcium efflux from the tissue. It is suggested that PGE1 exerts its inhibitory action by increasing calcium sequestration at the inner surface of the cell membrane.  相似文献   

18.
19.
Microsomal prostaglandin E(2) synthase (mPGES-1) represents a potential target for novel analgesic and anti-inflammatory agents. High-throughput screening identified several leads of mPGES-1 inhibitors which were further optimized for potency and selectivity. A series of inhibitors bearing a biaryl imidazole scaffold exhibits excellent inhibition of PGE(2) production in enzymatic and cell-based assays. The synthesis of these molecules and their activities will be discussed.  相似文献   

20.
We found that when 15-keto-PGE1 was added to cat blood, it was converted to 13,14-dihydro-15-keto-PGE1 (dihydro-keto-PGE1) by a NADH-dependent enzyme associated with some formed element(s) in the blood. When PGE1 was injected into the pulmonary artery of blood-perfused lungs, the only metabolite detectable in the pulmonary venous blood was the dihydro-keto-PGE1. However, when the lungs were perfused with an artificial perfusate containing no blood cells, a small amount of 15-keto-PGE1 was detected in the venous effluent. Therefore it would appear that a blood-borne Δ13 reductase was partially responsible for the conversion of PGE1 to dihydro-keto-PGE1 on passage through blood-perfused cat lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号