首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD19 and the Src family protein tyrosine kinases (PTKs) are important regulators of intrinsic signaling thresholds in B cells. Regulation is achieved by cross-talk between Src family PTKs and CD19; Lyn is essential for CD19 phosphorylation, while CD19 establishes an Src family PTK activation loop that amplifies kinase activity. However, CD19-deficient (CD19(-/-)) B cells are hyporesponsive to transmembrane signals, while Lyn-deficient (Lyn(-/-)) B cells exhibit a hyper-responsive phenotype resulting in autoimmunity. To identify the outcome of interactions between CD19 and Src family PTKs in vivo, B cell function was examined in mice deficient for CD19 and Lyn (CD19/Lyn(-/-)). Remarkably, CD19 deficiency suppressed the hyper-responsive phenotype of Lyn(-/-) B cells and autoimmunity characterized by serum autoantibodies and immune complex-mediated glomerulonephritis in Lyn(-/-) mice. Consistent with Lyn and CD19 each regulating conventional B cell development, B1 cell development was markedly reduced by Lyn deficiency, with further reductions in the absence of CD19 expression. Tyrosine phosphorylation of Fyn and other cellular proteins induced following B cell Ag receptor ligation was dramatically reduced in CD19/Lyn(-/-) B cells relative to Lyn(-/-) B cells, while Syk phosphorylation was normal. In addition, the enhanced intracellular Ca(2+) responses following B cell Ag receptor ligation that typify Lyn deficiency were delayed by the loss of CD19 expression. BCR-induced proliferation and humoral immune responses were also markedly inhibited by CD19/Lyn deficiency. These findings demonstrate that while the CD19/Lyn amplification loop is a major regulator of signal transduction thresholds in B lymphocytes, CD19 regulation of other Src family PTKs also influences B cell function and the development of autoimmunity.  相似文献   

2.
Using CD45-deficient clones from the immature B cell line, WEHI-231, we previously demonstrated that CD45 selectively dephosphorylates the Src-family protein tyrosine kinase Lyn and inhibits its kinase activity. To further define the mechanisms of CD45 action on Lyn, we metabolically labeled Lyn from CD45-positive and -negative WEHI-231 cells and analyzed cyanogen bromide fragments by SDS-PAGE analysis. Phosphoamino acid analysis confirmed that Lyn is tyrosine phosphorylated with little serine or threonine phosphorylation. In CD45-negative cells, two bands at 8.2 and 4.1 kDa were phosphorylated in the absence of B cell Ag receptor (BCR) ligation. The 8.2-kDa band corresponded to a fragment containing the positive regulatory site (Tyr397), as assessed by its size and its phosphorylation in an in vitro kinase assay. The 4.1-kDa band was phosphorylated by COOH-terminal Src kinase, suggesting that it contains the COOH-terminal negative regulatory site (Tyr508). CD45 was also shown to dephosphorylate autophosphorylated Lyn in vitro. Thus, CD45 dephosphorylates not only the negative but also the positive regulatory tyrosine residues of Lyn. Furthermore, coimmunoprecipitations using anti-Igalpha Ab demonstrated that Lyn associated with the resting BCR was constitutively phosphorylated and activated in CD45-negative cells. In the parental cells, both regulatory sites were phosphorylated on BCR ligation. Taken collectively, these results suggest that CD45 keeps both BCR-associated and total cytoplasmic pools of Lyn in an inactive state, and a mechanism by which Lyn is activated by relative reduction of CD45 effect may be operative on BCR ligation.  相似文献   

3.
The cell surface glycoprotein CD19 and the Src-related protein tyrosine kinase Lyn are key mediators of, respectively, positive and negative signaling in B cells. Despite the apparent opposition of their regulatory functions, a recent model of the biochemical events after B cell receptor (BCR) ligation intimately links the activation of Lyn and CD19. We examined the biochemical consequences of BCR ligation in mouse B cells lacking either Lyn or CD19 for evidence of interaction or codependence. In contrast to published results, we found CD19 phosphorylation after BCR ligation to be unaffected by the absence of Lyn, yet dependent on Src family protein tyrosine kinases as it was inhibited fully by PP2, an Src family-specific inhibitor. Consistent with normal CD19 phosphorylation in lyn(-/-) B cells, the recruitment of phosphoinositide-3 kinase to CD19 and the ability of CD19 to enhance both intracellular calcium flux and extracellular signal-regulated kinase 1/2 activation after coligation with the BCRs were intact in the absence of Lyn. Similarly, unique functions of Lyn were found to be independent of CD19. CD19(-/-) B cells were normal for increased Lyn kinase activity after BCR ligation, inhibition of BCR-mediated calcium flux after CD22 coligation, and inhibition of extracellular signal-regulated kinase phosporylation after FcgammaRIIB coligation. Collectively, these data show that the unique functions of Lyn do not require CD19 and that the signal amplification mediated by CD19 is independent of Lyn. We conclude that the roles of Lyn and CD19 after BCR ligation are independent and opposing, one being primarily inhibitory and the other stimulatory.  相似文献   

4.
The major histocompatability class II heterodimer (class II) is expressed on the surface of both resting and activated B cells. Although it is clear that class II expression is required for Ag presentation to CD4(+) T cells, substantial evidence suggests that class II serves as a signal transducing receptor that regulates B cell function. In ex vivo B cells primed by Ag receptor (BCR) cross-linking and incubation with IL-4, or B cell lines such as K46-17 micromlambda, class II ligation leads to the activation of protein tyrosine kinases, including Lyn and Syk and subsequent phospholipase Cgamma-dependent mobilization of Ca(2+). In this study, experiments demonstrated reciprocal desensitization of class II and BCR signaling upon cross-linking of either receptor, suggesting that the two receptors transduce signals via common processes and/or effector proteins. Because class II and BCR signal transduction pathways exhibit functional similarities, additional studies were conducted to evaluate whether class II signaling is regulated by BCR coreceptors. Upon cross-linking of class II, the BCR coreceptors CD19 and CD22 were inducibly phosphorylated on tyrosine residues. Phosphorylation of CD22 was associated with increased recruitment and binding of the protein tyrosine phosphatase SHP-1. Similarly, tyrosine phosphorylation of CD19 resulted in recruitment and binding of Vav and phosphatidylinositol 3-kinase. Finally, co-cross-linking studies demonstrated that signaling via class II was either attenuated (CD22/SHP-1) or enhanced (CD19/Vav and phosphatidylinositol 3-kinase), depending on the coreceptor that was brought into close proximity. Collectively, these results suggest that CD19 and CD22 modulate class II signaling in a manner similar to that for the BCR.  相似文献   

5.
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.  相似文献   

6.
B lymphocyte antigen receptor (BCR) signals are regulated by CD19, with BCR-induced intracellular calcium ([Ca(2+)](i)) responses enhanced by CD19 co-ligation. In this study, CD19 engagement using a dimeric anti-CD19 antibody induced [Ca(2+)](i) mobilization and significantly enhanced BCR-induced [Ca(2+)](i) responses without a requirement for CD19/BCR co-ligation. Although simultaneous CD19 and BCR engagement significantly enhanced CD19/Lyn complex formation and [Ca(2+)](i) responses, downstream tyrosine phosphorylation of CD22 and multiple other cellular proteins was inhibited, as was SHP1 recruitment to phosphorylated CD22. CD19 overexpression also enhanced BCR-induced [Ca(2+)](i) responses, but down-regulated tyrosine phosphorylation of CD22 and multiple other cellular proteins following BCR ligation. Because CD19 and Lyn expression are genetically titrated in B cells, CD19 engagement may augment BCR-induced [Ca(2+)](i) responses by sequestering the available pool of functional Lyn away from downstream negative regulatory proteins such as CD22. Consistent with this, simultaneous CD19 engagement did not further enhance the BCR-induced [Ca(2+)](i) responses of Lyn- or CD22-deficient B cells. Thus, CD19 recruitment of Lyn may preferentially activate selective signaling pathways downstream of the CD19/Lyn complex to the exclusion of other downstream regulatory and effector pathways. Other receptors may also utilize a similar strategy to regulate kinase availability and downstream intermolecular signaling.  相似文献   

7.
SHP-1 is a cytosolic tyrosine phosphatase implicated in down-regulation of B cell antigen receptor signaling. SHP-1 effects on the antigen receptor reflect its capacity to dephosphorylate this receptor as well as several inhibitory comodulators. In view of our observation that antigen receptor-induced CD19 tyrosine phosphorylation is constitutively increased in B cells from SHP-l-deficient motheaten mice, we investigated the possibility that CD19, a positive modulator of antigen receptor signaling, represents another substrate for SHP-1. However, analysis of CD19 coimmunoprecipitable tyrosine phosphatase activity in CD19 immunoprecipitates from SHP-1-deficient and wild-type B cells revealed that SHP-1 accounts for only a minor portion of CD19-associated tyrosine phosphatase activity. As CD19 tyrosine phosphorylation is modulated by the Lyn protein-tyrosine kinase, Lyn activity was evaluated in wild-type and motheaten B cells. The results revealed both Lyn as well as CD19-associated Lyn kinase activity to be constitutively and inducibly increased in SHP-1-deficient compared with wild-type B cells. The data also demonstrated SHP-1 to be associated with Lyn in stimulated but not in resting B cells and indicated this interaction to be mediated via Lyn binding to the SHP-1 N-terminal SH2 domain. These findings, together with cyanogen bromide cleavage data revealing that SHP-1 dephosphorylates the Lyn autophosphorylation site, identify Lyn deactivation/dephosphorylation as a likely mechanism whereby SHP-1 exerts its influence on CD19 tyrosine phosphorylation and, by extension, its inhibitory effect on B cell antigen receptor signaling.  相似文献   

8.
Bruton's tyrosine kinase (Btk) plays a critical role in B cell Ag receptor (BCR) signaling, as indicated by the X-linked immunodeficiency and X-linked agammaglobulinemia phenotypes of mice and men that express mutant forms of the kinase. Although Btk activity can be regulated by Src-family and Syk tyrosine kinases, and perhaps by phosphatidylinositol 3,4,5-trisphosphate, BCR-coupled signaling pathways leading to Btk activation are poorly understood. In view of previous findings that CD19 is involved in BCR-mediated phosphatidylinositol 3-kinase (PI3-K) activation, we assessed its role in Btk activation. Using a CD19 reconstituted myeloma model and CD19 gene-ablated animals we found that BCR-mediated Btk activation and phosphorylation are dependent on the expression of CD19, while BCR-mediated activation of Lyn and Syk is not. Wortmannin preincubation inhibited the BCR-mediated activation and phosphorylation of Btk. Btk activation was not rescued in the myeloma by expression of a CD19 mutant in which tyrosine residues previously shown to mediate CD19 interaction with PI3-K, Y484 and Y515, were changed to phenylalanine. Taken together, the data presented indicate that BCR aggregation-driven CD19 phosphorylation functions to promote Btk activation via recruitment and activation of PI3-K. Resultant phosphatidylinositol 3,4,5-trisphosphate probably functions to localize Btk for subsequent phosphorylation and activation by Src and Syk family kinases.  相似文献   

9.
《Cellular signalling》2014,26(7):1589-1597
The leukocyte antigen CD38 is expressed after all-trans retinoic acid (ATRA) treatment in HL-60 myelogenous leukemia cells and promotes induced myeloid differentiation when overexpressed. We found that Vav1 and SLP-76 associate with CD38 in two cell lines, and that these proteins complex with Lyn, a Src family kinase (SFK) upregulated by ATRA. SFK inhibitors PP2 and dasatinib, which enhance ATRA-induced differentiation, were used to evaluate the involvement of Lyn kinase activity in CD38-driven signaling. Cells treated with ATRA for 48 h followed by one hour of PP2 incubation show SFK/Lyn kinase inhibition. We observed that Lyn inhibition blocked c-Cbl and p85/p55 PI3K phosphorylation driven by the anti-CD38 agonistic mAb IB4 in ATRA-treated HL-60 cells and untreated CD38 + transfectants. In contrast, cells cultured for 48 h following concurrent ATRA and PP2 treatment did not show Lyn inhibition, suggesting ATRA regulates the effects on Lyn. 48 h of co-treatment preserved CD38-stimulated c-Cbl and p85/p55 PI3K phosphorylation indicating Lyn kinase activity is necessary for these events. In contrast another SFK inhibitor (dasatinib) which blocks Lyn activity with ATRA co-treatment prevented ATRA-induced c-Cbl phosphorylation and crippled p85 PI3K phosphorylation, indicating Lyn kinase activity is important for ATRA-propelled events potentially regulated by CD38. We found that loss of Lyn activity coincided with a decrease in Vav1/Lyn/CD38 and SLP-76/Lyn/CD38 interaction, suggesting these molecules form a complex that regulates CD38 signaling. Lyn inhibition also reduced Lyn and CD38 binding to p85 PI3K, indicating CD38 facilitates a complex responsible for PI3K phosphorylation. Therefore, Lyn kinase activity is important for CD38-associated signaling that may drive ATRA-induced differentiation.  相似文献   

10.
Stimulation of B lymphocytes through their antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins and induces both an increase of phosphatidylinositol and mobilization of cytoplasmic free calcium. The BCR associates with two classes of tyrosine kinase: Src-family kinase (Lyn, Fyn, Blk or Lck) and Syk kinase. To dissect the functional roles of these two types of kinase in BCR signaling, lyn-negative and syk-negative B cell lines were established. Syk-deficient B cells abolished the tyrosine phosphorylation of phospholipase C-gamma 2, resulting in the loss of both inositol 1,4,5-trisphosphate (IP3) generation and calcium mobilization upon receptor stimulation. Crosslinking of BCR on Lyn-deficient cells evoked a delayed and slow Ca2+ mobilization, despite the normal kinetics of IP3 turnover. These results demonstrate that Syk mediates IP3 generation, whereas Lyn regulates Ca2+ mobilization through a process independent of IP3 generation.  相似文献   

11.
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.  相似文献   

12.
The E3 ubiquitin ligase Cbl has been implicated in intracellular signaling pathways induced by the engagement of the B cell antigen receptor (BCR) as a negative regulator. Here we showed that Cbl deficiency results in a reduction of B cell proliferation. Cbl-/- B cells show impaired tyrosine phosphorylation, reduced Erk activation, and attenuated calcium mobilization in response to BCR engagement. The phosphorylation of Syk and Btk is also down-modulated. Interestingly, Cbl-/- B cells display enhanced BCR-induced phosphorylation of CD19 and its association with phosphatidylinositol 3-kinase. Importantly, Lyn kinase activity is up-regulated in Cbl-/- B cells, which correlates inversely with the Cbl-mediated ubiquitination of Lyn. Because Lyn has both negative and positive roles in B cells, our results suggested that Cbl differentially modulates the BCR-mediated signaling pathways through targeting Lyn ubiquitination, which affects B cell development and activation.  相似文献   

13.
Activation of Akt by multiple stimuli including B cell antigen receptor (BCR) engagement requires phosphatidylinositol 3-kinase and regulates processes including cell survival, proliferation, and metabolism. BCR cross-linking activates three families of non-receptor protein tyrosine kinases (PTKs) and these are transducers of signaling events including phospholipase C and mitogen-activated protein kinase activation; however, the relative roles of PTKs in BCR-mediated Akt activation are unknown. We examined Akt activation in Lyn-, Syk- and Btk-deficient DT40 cells and B cells from Lyn(-/-) mice. BCR-mediated Akt activation required Syk and was partially dependent upon Btk. Increased BCR-induced Akt phosphorylation was observed in Lyn-deficient DT40 cells and Lyn(-/-) mice compared with wild-type cells suggesting that Lyn may negatively regulate Akt function. BCR-induced tyrosine phosphorylation of the phosphatidylinositol 3-kinase catalytic subunit was abolished in Syk-deficient cells consistent with a receptor-proximal role for Syk in BCR-mediated phosphatidylinositol 3-kinase activation; in contrast, it was maintained in Btk-deficient cells, suggesting Btk functions downstream of phosphatidylinositol 3-kinase. Calcium depletion did not influence BCR-induced Akt phosphorylation/activation, showing that neither Syk nor Btk mediates its effects via changes in calcium levels. Thus, BCR-mediated Akt stimulation is regulated by multiple non-receptor PTK families which regulate Akt both proximal and distal to phosphatidylinositol 3-kinase activation.  相似文献   

14.
15.
B cell receptor (BCR) stimulation induces phosphorylation of a number of proteins, leading to functional activation of B lymphocytes. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase, involved in a variety of signaling pathways. In this study, we show that FAK is tyrosine-phosphorylated and activated following BCR stimulation. We also demonstrate constitutive association of FAK with the Src-family kinase Lyn and with components of the BCR. Association of Lyn with FAK which was not correlated with BCR-induced activation of both kinases, appeared to be mediated via the binding of Lyn to the COOH-terminal part of the FAK molecule. Our results indicate that FAK is a component of the BCR complex and that it participates in BCR signaling.  相似文献   

16.
The immunoreceptor tyrosine-based inhibition motif (ITIM) is found in various membrane molecules such as CD22 and the low-affinity Fc receptor for IgG in B cells and the killer cell-inhibitory receptor and Ly-49 in NK cells. Upon tyrosine phosphorylation at the ITIMs, these molecules recruit SH2 domain-containing phosphatases such as SH2-containing tyrosine phosphatase-1 and negatively regulate cell activity. The B cell surface molecule CD72 carries an ITIM and an ITIM-like sequence. We have previously shown that CD72 is phosphorylated and recruits SH2-containing tyrosine phosphatase-1 upon cross-linking of the Ag receptor of B cells (BCR). However, whether CD72 modulates BCR signaling has not yet been elucidated. In this paper we demonstrate that expression of CD72 down-modulates both extracellular signal-related kinase (ERK) activation and Ca2+ mobilization induced by BCR ligation in the mouse B lymphoma line K46micromlambda, whereas BCR-mediated ERK activation was not reduced by the ITIM-mutated form of CD72. Moreover, coligation with CD72 with BCR reduces BCR-mediated ERK activation in spleen B cells of normal mice. These results indicate that CD72 negatively regulates BCR signaling. CD72 may play a regulatory role in B cell activation, probably by setting a threshold for BCR signaling.  相似文献   

17.
Signaling through the B cell antigen receptor (BCR) is negatively regulated by the SH2 domain-containing protein-tyrosine phosphatase SHP-1, which requires association with tyrosine-phosphorylated proteins for activation. Upon BCR ligation, SHP-1 has been shown to associate with the BCR, the cytoplasmic protein-tyrosine kinases Lyn and Syk, and the inhibitory co-receptors CD22 and CD72. How SHP-1 is activated by BCR ligation and regulates BCR signaling is, however, not fully understood. Here we demonstrate that, in the BCR-expressing myeloma line J558L mu 3, CD72 expression reduces the BCR ligation-induced phosphorylation of the BCR component Ig alpha/Ig beta and its cytoplasmic effectors Syk and SLP-65. Substrate phosphorylation was restored by expression of dominant negative mutants of SHP-1, whereas the SHP-1 mutants failed to enhance phosphorylation of the cellular substrates in the absence of CD72. This indicates that SHP-1 is efficiently activated by CD72 but not by other pathways in J558L mu m3 cells and that inhibition of SHP-1 specifically activated by CD72 reverses CD72-induced dephosphorylation of cellular substrates in these cells. Taken together, BCR-induced SHP-1 activation is likely to require inhibitory co-receptors such as CD72, and SHP-1 appears to mediate the negative regulatory effect of CD72 on BCR signaling by dephosphorylating Ig alpha/Ig beta and its downstream signaling molecules Syk and SLP-65.  相似文献   

18.
CD19 and Bruton's tyrosine kinase (Btk) may function along common signaling pathways in regulating intrinsic and B cell Ag receptor (BCR)-induced signals. To identify physical and functional interactions between CD19 and Btk, a CD19-negative variant of the A20 B cell line was isolated, and CD19-deficient (CD19(-/-)) and CD19-overexpressing mice with the X-linked immunodeficient (Xid; Btk) mutation were generated. In A20 cells, Btk physically associated with CD19 following BCR engagement. CD19 and Btk interactions were not required for initial Btk phosphorylation, but CD19 expression maintained Btk in an activated state following BCR engagement. In primary B cells, CD19 signaling also required downstream Btk function since CD19-induced intracellular Ca(2+) ([Ca(2+)](i)) responses were modest in Xid B cells. In addition, CD19 overexpression did not normalize the Xid phenotype and most phenotypic and functional hallmarks of CD19 overexpression were not evident in these mice. However, CD19 and Btk also regulate independent signaling pathways since their combined loss had additive inhibitory effects on BCR-induced [Ca(2+)](i) responses and CD19 deficiency induced a severe immunodeficiency in Xid mice. Thus, CD19 expression amplifies or prolongs Btk-mediated signaling, rather than serving as a required agent for Btk activation. Consistent with this, phosphatidylinositol 3-monophosphate kinase and Akt activation were normal in CD19(-/-) B cells following IgM engagement, although their kinetics of activation was altered. Thus, these biochemical and compound gene dosage studies indicate that Btk activation and [Ca(2+)](i) responses following BCR engagement are regulated through multiple pathways, including a CD19/Src family kinase-dependent pathway that promotes the longevity of Btk signaling.  相似文献   

19.
20.
The Src-family protein-tyrosine kinase (PTK) Lyn is the most important Src-family kinase in B cells, having both inhibitory and stimulatory activity that is dependent on the receptor, ligand, and developmental context of the B cell. An important role for Lyn has been reported in acute myeloid leukemia and chronic myeloid leukemia, as well as certain solid tumors. Although several Src-family inhibitors are available, the development of Lyn-specific inhibitors, or inhibitors with reduced off-target activity to Lyn, has been hampered by the lack of structural data on the Lyn kinase. Here we report the crystal structure of the non-liganded form of Lyn kinase domain, as well as in complex with three different inhibitors: the ATP analogue AMP-PNP; the pan Src kinase inhibitor PP2; and the BCR-Abl/Src-family inhibitor Dasatinib. The Lyn kinase domain was determined in its "active" conformation, but in the unphosphorylated state. All three inhibitors are bound at the ATP-binding site, with PP2 and Dasatinib extending into a hydrophobic pocket deep in the substrate cleft, thereby providing a basis for the Src-specific inhibition. Analysis of sequence and structural differences around the active site region of the Src-family PTKs were evident. Accordingly, our data provide valuable information for the further development of therapeutics targeting Lyn and the important Src-family of kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号