首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p56lck, a member of the src family of cytoplasmic tyrosine kinases, is expressed predominantly in T cells where it associates with the T-cell surface molecules CD4 and CD8. Mutants of CD4 and CD8 that have lost the ability to associate with p56lck no longer enhance antigen-induced T-cell activation. This suggests that p56lck plays an important role during T-cell activation. In an effort to understand the function of p56lck in T cells, a constitutively activated lck gene (F505lck) was introduced into T-helper hybridoma cell lines by retroviral infection. In four T-cell lines we examined, the activated lck protein stimulated interleukin-2 (IL-2) production, a hallmark of T-cell activation, in the absence of antigenic stimulation. In addition, a marked increase in antigen-independent IL-2 production was apparent when T cells infected with a temperature-sensitive F505lck were shifted to the permissive temperature. Only one cell line expressing F505lck exhibited increased sensitivity to antigenic stimulation. The SH3 domain of p56lck was dispensable for the induction of antigen-independent IL-2 production. In contrast, deletion of the majority of the SH2 domain of p56F505lck reduced its ability to induce spontaneous IL-2 production markedly. Activated p60c-src also induced antigen-independent IL-2 production, whereas two other tyrosine kinases, v-abl and the platelet-derived growth factor receptor, did not. Tyrosine phosphorylation of a 70-kDa cellular protein was observed after cross-linking of CD4 in T cells expressing F505lck but not in cells expressing F527src.  相似文献   

2.
p56lck, a lymphocyte-specific tyrosine protein kinase, binds to the cytoplasmic tails of the T-cell surface molecules CD4 and CD8. Cross-linking of CD4 expressed on the surface of murine thymocytes, splenocytes, and CD4+ T-cell lines induced tyrosine phosphorylation of p56lck dramatically. Cross-linking of CD8 stimulated tyrosine phosphorylation of p56lck strongly in murine L3 and GA4 cells, slightly in splenocytes, but not detectably in thymocytes. Differing effects of cross-linking on in vitro tyrosine kinase activity of p56lck were observed. An increase in the in vitro kinase activity of p56lck, when assayed with [Val5]-angiotensin II as an exogenous substrate, was found to accompany cross-linking of CD4 in three cell lines. No stimulation of the in vitro kinase activity, however, was observed after cross-linking of CD8 in L3 cells. The phosphorylation of p56lck at Tyr-394, the autophosphorylation site, was stimulated by cross-linking in all cell lines examined. Tyr-394 was the predominant site of increased tyrosine phosphorylation in two leukemic cell lines. In the other two cell lines, the phosphorylation of both Tyr-394 and an inhibitory site, Tyr-505, was found to increase. In contrast to cross-linking with antibodies, no striking increase in the tyrosine phosphorylation of p56lck was stimulated by antigenic stimulation. Therefore, the effect of antibody-induced aggregation of CD4 and CD8 on the tyrosine phosphorylation of p56lck differs, at least quantitatively, from what occurs during antigen-induced T-cell activation.  相似文献   

3.
CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.  相似文献   

4.
The CD4 and CD8 antigens on T cells have been shown to associate with the Src family member p56lck and a GTP-binding protein, p32. The identification of receptor interactions with intracellular mediators is essential in the elucidation of downstream signals mediated by engagement of these receptor complexes. In this study, we report the detection of an additional 110-kDa polypeptide (p110) associated with the CD4-p56lck complex in human peripheral blood T lymphocytes and leukemic T-cell lines. p110 bound preferentially to CD4-p56lck as an assembled complex and poorly, if at all, to the individual components. p110 was recognized directly by an antiserum to the C-terminal region of the serine/threonine kinase Raf-1 and is related to a p110 polypeptide detected in anti-Raf-1 immunoprecipitates. Despite its association with the CD4-p56lck complex, p110 was found to be phosphorylated predominantly on serine residues. Furthermore, phorbol ester treatment of cells resulted in a transient increase in the detection of p110 associated with CD4-p56lck, concomitant with the modulation of CD4-p56lck from the cell surface. This Raf-1-related p110 is therefore likely to play a role in signals generated from the CD4-p56lck complex. p110 may serve as a bridge between the CD4-p56lck complex and the serine/threonine kinase pathways of T-cell activation.  相似文献   

5.
Accumulating data suggest that the CD4 T-cell surface antigen transduces an independent intracellular signal during antigen-mediated T-cell activation. CD4 is physically associated with the internal membrane tyrosine protein kinase p56lck and can mediate, after antibody-mediated cross-linking, the rapid enzymatic activation of Lck, implying that CD4 signalling may involve changes in tyrosine protein phosphorylation. In this report, we describe that cross-linking of CD4 results in a series of rapid changes in intracellular tyrosine protein phosphorylation. The most prominent CD4-induced tyrosine phosphorylation change involved p56lck, which became extensively phosphorylated on the carboxy-terminal tyrosine residue 505 and, to a lesser extent, lymphocytes can transduce an intracellular signal resulting in tyrosine protein phosphorylation and strongly suggest that this property of CD4 is mediated through p56lck.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) Nef is a myristylated protein with a relative molecular mass of 27 kDa, is localized to the cytoplasmic surfaces of cellular membranes, and has been reported to down-modulate CD4 in human T cells. To understand the mechanism of HIV-1 Nef-mediated down-modulation of cell surface CD4, we expressed Nef protein in human T-cell line VB. Expression of HIV-1 Nef protein down-modulated surface CD4 molecules. In pulse-chase experiments, CD4 molecules in Nef-expressing cells were synthesized at normal levels. However, the bulk of newly synthesized CD4 protein was degraded with a half-life of approximately 6 h, compared with the 24-h half-life in control cells. This Nef-induced acceleration of CD4 turnover was inhibited by lysosomotropic agents NH4Cl and chloroquine as well as by the protease inhibitor leupeptin. Surface CD4 biotinylation experiments demonstrated that CD4 molecules in Nef-expressing T cells are transported to the plasma membrane with normal kinetics but are then rapidly internalized. Therefore, HIV-1 Nef-induced down-modulation of CD4 is due to rapid internalization of surface CD4 and subsequent degradation by an acid-dependent process, potentially lysosomal. Additionally, in a Nef-expressing cell, we find accelerated dissociation of the T-cell tyrosine kinase p56lck and CD4 but only after the complex reaches the plasma membrane. This implies that HIV-1 Nef protein might play a role in triggering a series of T-cell activation-like events, which contribute to p56lck dissociation and internalization of surface CD4 molecules.  相似文献   

7.
PMA causes rapid down-modulation of CD4 molecules on murine immature thymocytes, human PBL, and CD4-positive human tumor cell lines, but not on murine peripheral lymphocytes. The mechanisms of phorbol ester-induced down modulation of CD4 molecules, however, have not been elucidated. To determine how PMA down-modulates CD4 expression by T lymphocytes, we studied the ability of inhibitors of protein kinase C, calmodulin, actin, and tubulin to block PMA-induced modulation of CD4 in several murine and human cell types. We also tested the ability of intracellular and extracellular calcium chelators to block CD4 internalization. There was marked variability in the degree of PMA-induced down-modulation of CD4 among various cell types. The effects of PMA on CD4 expression were greater for murine thymocytes, for human PBL, and for the human lymphoblastic leukemia cell line, MOLT-3, than for any of the other cell types studied. The protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, blocked phosphorylation but not internalization of CD4 molecules induced by PMA. Therefore, phosphorylation of CD4 molecules by protein kinase C is not required for the internalization of the molecules. Internalization was blocked by both inhibitors of calmodulin, N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide, and trifluoperazine. PMA-induced internalization of CD4 was blocked by Quin-2 AM, which chelates intracellular calcium. EGTA, which chelates extracellular calcium, did not block internalization. Inhibitors of actin or tubulin did not block internalization. These results suggest that PMA-induced modulation of CD4 can occur in the absence of phosphorylation of the CD4 molecules and is calmodulin and intracellular calcium dependent.  相似文献   

8.
The CD4 and CD8 antigens on the surface of T cells appear to bind to major histocompatibility complex (MHC) class II and I antigens, respectively. These receptors have also been found to regulate T cell growth in a manner independent of MHC recognition. In this report, we describe recent work showing that the CD4 and CD8 receptors are coupled to a protein-tyrosine kinase, p56lck, from T lymphocytes. The p56lck protein is a member of the src family, which plays a crucial role in the activation and transformation of various mammalian cells. The CD4/CD8:p56lck complex is catalytically active as shown by its ability to phosphorylate at 55-60 kDa. Two-dimensional, nonequilibrium gel electrophoresis demonstrated the similarity of p56lck associated with the CD4 and CD8 antigens. Detergents were found to vary in their ability to solubilize the CD4:p56lck complex in a catalytically active form. We further demonstrated by in vitro phosphorylation that members of the CD3 complex including the gamma, delta, and epsilon chains, as well as a putative zeta subunit can be phosphorylated at tyrosyl residues by the CD4/CD8:p56lck complex. Thus, this interaction may play an important role in the activation of T cells, and may mediate the cooperative interaction between the CD4/CD8 antigens and the Ti(TcR)/CD3 complex. This interaction also represents a possible precedent by which other members of the src family (c-src, c-yes, c-fgr, etc.) may be found to interact with mammalian growth receptors.  相似文献   

9.
A Greenway  A Azad    D McPhee 《Journal of virology》1995,69(3):1842-1850
Human immunodeficiency virus type 1 (HIV-1) Nef protein causes the loss of cell surface CD4 and interleukin-2 (IL-2) receptor (Tac) from peripheral blood mononuclear cells (PBMC) and CD4+ T-cell lines. As both CD4 and the IL-2 receptor play crucial roles in antigen-driven helper T-cell signalling and T-cell proliferation, respectively, the role of Nef in the viral life cycle may be to perturb signalling pathways emanating from these receptors. However, the intracellular targets for Nef that result in receptor down-regulation are unknown. Using a recombinant glutathione S-transferase-full-length 27 kDa Nef (Nef27) fusion protein, produced in Escherichia coli by translation from the first start codon of HIV-1 nef clone pNL4-3, as an affinity reagent to probe cytoplasmic extracts of MT-2 cells and PBMC, we have shown interaction with at least seven host cell protein species ranging from 24 to 75 kDa. Immunoblotting identified four of these proteins as p56lck, CD4, p53, and p44mapk/erk1, all of which are intimately involved in intracellular signalling. To assess the relevance of these interactions and further define the biochemical activity of Nef in signal transduction pathways, highly purified Nef27 protein was introduced directly into PBMC by electroporation. Nef27-treated PBMC showed reduced proliferative responsiveness to exogenous recombinant IL-2. Normally, stimulation of T-cells by IL-2 or phorbol 12-myristate 13-acetate provokes both augmentation of p56lck activity and corresponding posttranslational modification of p56lck. These changes were also inhibited by treatment of PBMC with Nef, suggesting that Nef interferes with activation of p56lck and as a consequence of signalling via the IL-2 receptor. Further evidence for Nef interfering with cell proliferation was the decreased production of the proto-oncogene c-myb, which is required for cell cycle progression, in Nef-treated MT-2 cells. In contrast to the binding characteristics and biological effects of Nef27, the alternate 25-kDa isoform of Nef (Nef25) produced by translation from the second start codon of HIV nef pNL4-3 (57 nucleotide residues downstream) was shown to interact with only three cellular proteins of approximately 26, 28, and 56 kDa from PBMC and MT-2 cells, one of which was identified as p56lck. Also, proliferation and posttranslational modification of p56lck in response to IL-2 stimulation were not profoundly affected by treatment of PBMC with Nef25 compared with Nef27.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
CD45 is a transmembrane protein tyrosine phosphatase playing an essential role during T-cell activation. This function relates to the ability of CD45 to regulate p56(lck), a cytoplasmic protein tyrosine kinase necessary for T-cell antigen receptor (TCR) signaling. Previous studies have demonstrated that CD45 is constitutively associated in T-lymphocytes with a transmembrane molecule termed CD45-AP (or lymphocyte phosphatase-associated phosphoprotein). Even though the exact role of this polypeptide is unclear, recent analyses of mice lacking CD45-AP have indicated that its expression is also required for optimal T-cell activation. Herein, we wished to understand better the function of CD45-AP. The results of our studies showed that in T-cells, CD45-AP is part of a multimolecular complex that includes not only CD45, but also TCR, the CD4 and CD8 coreceptors, and p56(lck). The association of CD45-AP with TCR, CD4, and CD8 seemed to occur via the shared ability of these molecules to bind CD45. However, binding of CD45-AP to p56(lck) could take place in the absence of other lymphoid-specific components, suggesting that it can be direct. Structure-function analyses demonstrated that such an interaction was mediated by an acidic segment in the cytoplasmic region of CD45-AP and by the kinase domain of p56(lck). Interestingly, the ability of CD45-AP to interact with Lck in the absence of other lymphoid-specific molecules was proportional to the degree of catalytic activation of p56(lck). Together, these findings suggest that CD45-AP is an adaptor molecule involved in orchestrating interactions among components of the antigen receptor signaling machinery. Moreover, they raise the possibility that one of the functions of CD45-AP is to recognize activated Lck molecules and bring them into the vicinity of CD45.  相似文献   

12.
A newly isolated T-cell line (CB1) derived from a T-acute lymphoblastic leukaemia (T-ALL) patient contained cells (40% of total) which did not express the CD45 phosphotyrosine phosphatase. The cells were sorted into CD45- and CD45+ populations and shown to be clonal in origin. T-cell receptor (TCR) cross-linking or coligation of the TCR with its CD4/CD8 co-receptors induced tyrosine phosphorylation and calcium signals in CD45+ but not in CD45- cells. Unexpectedly, whole cell p56lck and p59fyn tyrosine kinase activities were not reduced in CD45- compared to CD45+ cells. A novel technique was therefore developed to isolated specific pools of aggregated receptors expressed at the cell surface, together with their associated tyrosine kinases. Using this technique it was shown that cell surface CD4-p56lck kinase activity was 78% lower in CD45- than in CD45+ cells. Phosphorylation of TCR zeta- and gamma-chains occurred in TCR immunocomplexes from CD45+ but not CD45- cells, despite comparable levels of p59fyn and TCR proteins. Furthermore, TCR-associated tyrosine kinase activity towards an exogenous substrate was 84% lower in CD45- than in CD45+ cells. Addition of recombinant p59fyn to TCR immunocomplexes isolated from CD45-cells restored the phosphorylation of the TCR zeta- and gamma-chains. Our results demonstrate that CD45 selectively regulates the pools of p59fyn and p56lck kinases which are associated with the TCR and CD4 at the cell surface. Activation by CD45 of these receptor-associated kinase pools correlates with the ability of the TCR and its coreceptors to couple to intracellular signalling pathways.  相似文献   

13.
The lymphocyte glycoprotein CD4 is constitutively internalized and recycled in nonlymphoid cells, but is excluded from the endocytic pathway in lymphocytic cells (Pelchen-Matthews, A., J. E. Armes, G. Griffiths, and M. Marsh. 1991. J. Exp. Med. 173: 575-587). Inhibition of CD4 endocytosis is dependent on CD4 expressing an intact cytoplasmic domain and is only observed in cells where CD4 can interact with the protein tyrosine kinase p56lck, a member of the src gene family. We have expressed p56lck, p60c-src, or chimeras of the two proteins in CD4-transfected NIH-3T3 or HeLa cells. Immunoprecipitation of CD4 and in vitro kinase assays showed that p56lck and the lck/src chimera, which contains the NH2 terminus of p56lck, can associate with CD4. In contrast, p60c-src and the src/lck chimera, which has the NH2 terminus of p60c-src, do not associate with CD4. Endocytosis assays using radioiodinated anti-CD4 monoclonal antibodies demonstrated that coexpression of CD4 with p56lck, but not with p60c-src, inhibited CD4 endocytosis, and that the extent of the inhibition depended directly on the relative levels of CD4 and p56lck expressed. The uptake of mutant CD4 molecules which cannot interact with p56lck was not affected. Measurement of the fluid-phase endocytosis of HRP or the internalization of transferrin indicated that the effect of p56lck was specific for CD4, and did not extend to other receptor-mediated or fluid-phase endocytic processes. Immunogold labeling of CD4 at the cell surface and observation by electron microscopy demonstrated directly that p56lck inhibits CD4 endocytosis by preventing its entry into coated pits.  相似文献   

14.
The CD4 and CD8 T cell antigens are thought to transduce an independent signal during the process of T cell activation. We report our evaluation of the possible involvement of the lymphocyte-specific tyrosine kinase p56lck in these transduction pathways. Our data demonstrate that p56lck is specifically modulated with either CD4 or CD8 following antibody-mediated cross-linking of these molecules and that a large fraction of the total cellular lck protein can be coimmunoprecipitated with these surface glycoproteins. These results suggest that p56lck is functionally and physically associated with CD4/CD8 in normal murine T lymphocytes and support the concept that an independent signal is transduced by the interaction of these surface molecules with major histocompatibility complex determinants.  相似文献   

15.
The T cell-specific transmembrane glycoprotein CD4 interacts with class II MHC molecules via its external domain and is associated with tyrosine kinase p56lck via a cysteine motif in its cytoplasmic domain. We have assessed the ability of CD4 to synergize with the antigen-specific T cell receptor (TCR) for induction of transmembrane signals that result in lymphokine production. Mutant CD4 molecules were introduced into T cells that lacked endogenous CD4 but expressed TCRs specific for lysozyme peptides or the superantigen SEA bound to Ab or Abm12 class II MHC molecules. With either ligand, T cell activation occurred only when CD4 was associated with p56lck. These results demonstrate that residues within the cytoplasmic domain of CD4 are required for its coreceptor function in TCR-mediated signal transduction and strongly support the notion that the association of CD4 with p56lck is critical in this process.  相似文献   

16.
Cross-linking of glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins on T cells can trigger cell activation. We and others have shown an association between GPI-anchored proteins and the protein tyrosine kinases (PTKs) p56lck and p59fyn, suggesting a pathway for signaling through GPI-anchored proteins. Studies of decay-accelerating factor (DAF) or CD59 in either the C32 cell line or the HeLa cell line transfected with PTK cDNA demonstrated that the GPI-anchored proteins associated noncovalently with p56lck and p59fyn but not with p60src. Nonmyristylated versions of p56lck and p59fyn also failed to associate with the GPI-anchored proteins. Mutational analysis of the PTK demonstrated that the association with the GPI-anchored proteins mapped to the unique amino-terminal domains of the PTK. A chimeric PTK consisting of the 10 amino-terminal residues of p56lck or p59fyn replacing the corresponding amino acids in p60src was sufficient for association with DAF, but the converse constructs containing the first 10 amino acids of p60src plus the remainder of p56lck or p59fyn did not associate with DAF. Mutation of cysteine to serine at positions 3 and 6 in p59fyn or positions 3 and 5 in p56lck abolished the association of these kinases with DAF. Mutation of serine to cysteine at positions 3 and 6 in p60src conferred on p60src the ability to associate with DAF. Direct labeling with [3H]palmitate demonstrated palmitylation of this amino-terminal cysteine motif in p56lck. Thus, palmitylation of the amino-terminal cysteine residue(s) together with myristylation of the amino-terminal glycine residue defines important motifs for the association of PTKs with GPI-anchored proteins.  相似文献   

17.
The human immunodeficiency virus binds to CD4+ T lymphocytes through the interaction of its envelope glycoprotein (gp120) with the CD4 molecule. The src-related protein tyrosine kinase p56lck is physically associated with CD4 and is co-immunoprecipitated by CD4 monoclonal antibody (mAb). Activators of protein kinase C (PKC) cause the dissociation of p56lck from CD4. Here we report that gp120 mAb immunoprecipitated the p56lck.CD4.gp120 complex after short term treatment (20 min) of human T lymphocytes with gp120. The p56lck that was associated with the CD4.gp120 complex was dissociated by activators of PKC. This effect was abolished by pretreatment of cells with PKC inhibitors. Thus the p56lck.CD4.gp120 immune complex immunoprecipitated by gp120 mAb behaves in a similar manner, with respect to PKC activation or inhibition, to the p56lck.CD4 complex immunoprecipitated by CD4 mAb. Short term treatment of cells with gp120, followed by gp120 mAb, resulted in an increase in the tyrosine kinase activity of p56lck associated with CD4. However, the amount of enzyme associated with CD4 remained unchanged. Long term treatment (20 h) of human T lymphocytes with gp120 resulted in the down-regulation of cell surface CD4 molecules. A parallel decrease in CD4-associated gp120 was also observed. In addition, gp120 caused the dissociation of p56lck and CD4. However, the dissociation of the p56lck from CD4 occurred at much faster rate than the down-regulation of surface CD4 molecules. Such mechanisms may account for the down-regulation of cell surface CD4 molecules and the depletion of functional CD4+ T lymphocytes which are characteristic of human immunodeficiency virus infections and acquired immune deficiency syndrome pathogenesis.  相似文献   

18.
The CD4 receptor subserves both adhesion and signal transduction functions on CD4+ T-lymphocytes. CD4 is physically associated with the src-related protein tyrosine kinase p56lck. Cell surface engagement of CD4 leads to enzymatic activation of the associated p56lck and the phosphorylation of T-cell proteins on tyrosine residues. We have identified a 72-74kD protein phosphorylated on tyrosine residues following activation of CD4-associated p56lck as the serine-threonine kinase Raf-1. The demonstration that Raf-1 is a substrate for the CD4/p56lck receptor system in normal cells suggests that receptor and nonreceptor classes of protein tyrosine kinases can independently engage functionally overlapping signal transduction pathways.  相似文献   

19.
The tyrosine protein kinase p56lck transduces signals important for antigen-induced T-cell activation. In transgenic mice, p56lck is oncogenic when overexpressed or expressed as a mutant, catalytically activated enzyme. In humans, the LCK gene is located at the breakpoint of the t(1;7)(p34;q34) chromosomal translocation. This translocation positions the beta T-cell receptor constant region enhancer upstream of the LCK gene without interrupting the LCK coding sequences, and a translocation of this sort occurs in both the HSB2 and the SUP-T-12 T-cell lines. We have found that, although the level of the p56lck protein in HSB2 cells is elevated approximately 2-fold in comparison with that in normal T-cell lines, total cellular tyrosine protein phosphorylation is elevated approximately 10-fold. Increased levels of phosphotyrosine in HSB2 cells resulted from mutations in the LCK gene that activated its function as a phosphotransferase and converted it into a dominant transforming oncogene. The oncogenic p56lck in HSB2 cells contained one amino acid substitution within the CD4/CD8-binding domain, two substitutions in the kinase domain, and an insertion of Gln-Lys-Pro (QKP) between the SH2 and kinase domains. In NIH 3T3 fibroblasts, three of these mutations cooperated to produce the fully oncogenic form of this p56lck variant. These results suggest that mutation of LCK may contribute to some human T-cell leukemias.  相似文献   

20.
The lymphocyte-specific tyrosine protein kinase p56lck is abundantly expressed in L3T4+ (CD4+) and Lyt-2+ (CD8+) T-lymphocytes, where it is predominantly phosphorylated in vivo on the carboxy-terminal tyrosine residue 505 (Y-505). Upon exposure to activating signals (mitogenic lectins, antibodies to the T-cell receptor), the p56lck expressed in normal cloned murine T-cells is modified into a product which migrates at approximately 59 kilodaltons on sodium dodecyl sulfate-polyacrylamide gels and which possesses several amino-terminal serine phosphorylations. The changes in both mobility and amino-terminal phosphorylation can be reproduced by known activators of protein kinase C (4 alpha-phorbol 12 beta-myristate, dioctanoylglycerol), suggesting that this signal transduction pathway (or related pathways) mediates at least part of these events. Interestingly, agents raising intracellular calcium (such as A23187) cause the appearance of several of these amino-terminal phosphorylation changes but do not cause the pronounced shift in electrophoretic mobility. These data suggest that at least two serine kinase systems are implicated in the alterations of p56lck associated with T-cell activation and that the lck gene product plays a critical role in normal T-cell physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号