首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastic modulus and strength of trabecular bone are negatively affected by osteoporosis and other metabolic bone diseases. Micro-computed tomography-based beam models have been presented as a fast and accurate way to determine bone competence. However, these models are not accurate for trabecular bone specimens with a high number of plate-like trabeculae. Therefore, the aim of this study was to improve this promising methodology by representing plate-like trabeculae in a way that better reflects their mechanical behavior. Using an optimized skeletonization and meshing algorithm, voxel-based models of trabecular bone samples were simplified into a complex structure of rods and plates. Rod-like and plate-like trabeculae were modeled as beam and shell elements, respectively, using local histomorphometric characteristics. To validate our model, apparent elastic modulus was determined from simulated uniaxial elastic compression of 257 cubic samples of trabecular bone (4mm×4mm×4mm; 30μm voxel size; BIOMED I project) in three orthogonal directions using the beam-shell models and using large-scale voxel models that served as the gold standard. Excellent agreement (R(2)=0.97) was found between the two, with an average CPU-time reduction factor of 49 for the beam-shell models. In contrast to earlier skeleton-based beam models, the novel beam-shell models predicted elastic modulus values equally well for structures from different skeletal sites. It allows performing detailed parametric analyses that cover the entire spectrum of trabecular bone microstructures.  相似文献   

2.
Analyses of the distributions of stress and strain within individual bone trabeculae have not yet been reported. In this study, four trabeculae were imaged and finite elements models were generated in an attempt to quantify the variability of stress/strain in real trabeculae. In three of these trabeculae, cavities were identified with depths comparable to values reported for resorption lacunae ( approximately 50 microm)-although we cannot be certain, it is most probable that they are indeed resorption lacunae. A tensile load was applied to each trabeculum to simulate physiological loading and to ensure that bending was minimized. The force carried by each trabecula was calculated from this value using the average cross sectional area of each trabecula. The analyses predict that very high stresses (>100 MPa) existed within bone trabecular tissue. Stress and strain distributions were highly heterogeneous in all cases, more so in trabeculae with the presumptive resorption lacunae where at least 30% of the tissue had a strain greater than 4000 micoepsilon in all cases. Stresses were elevated at the pit of the lacunae, and peak stress concentrations were located in the longitudinal direction ahead of the lacunae. Given these high strains, we suggest that microdamage is inevitable around resorption lacunae in trabecular bone, and may cause the bone multicellular unit to proceed to resorb a packet of bone in the trabeculum rather than just resorb whatever localized area was initially targeted.  相似文献   

3.
Loading bone beyond its yield point creates microdamage, leading to reduction in stiffness. Previously, we related microdamage accumulation to changes in mechanical properties. Here, we develop a model that predicts stiffness loss based on the presence of microdamage. Modeling is done at three levels: (1) a single trabecula, (2) a cellular solid consisting of intact, damaged, and fractured trabeculae, and (3) a specimen with a localized damage band. Predictions of a reduced modulus agree well with experimental measured modulus reductions of post-yield compression of bovine trabecular bone. The predicted reduced modulus is relatively insensitive to changes in the input parameters.  相似文献   

4.
A quantitative model is developed for trabecular bone by approximating the trabecular geometry with a hypothetical network of compact bone. For the region immediately beneath the articular cartilage in the distal end of the femur, finite element analyses were performed with a high speed computer, assuming a physiological static load. The results indicate that bending and buckling of trabeculae are considerable in any elastic deformation of the bone; that fatigue fracture in some fraction of suitably oriented trabeculae is inevitable in normal ambulation; and that the stiffness varies considerably with lateral position across the subchondral plate. The latter depends totally on trabecular arrangement and may play a role in joint function and degeneration. The adjustments necessary to bring the gross stiffness into agreement with experiment imply that the intertrabecular soft tissues are of no consequence to the mechanical properties and that the compact bone of which trabeculae are made is probably not as stiff as cortical bone.  相似文献   

5.
The bone remodeling process takes place at the surface of trabeculae and results in a non-uniform mineral distribution. This will affect the mechanical properties of cancellous bone, because the properties of bone tissue depend on its mineral content. We investigated how large this effect is by simulating several non-uniform mineral distributions in 3D finite element models of human trabecular bone and calculating the apparent stiffness of these models. In the ‘linear model’ we assumed a linear relation between mineral content and Young's modulus of the tissue. In the ‘exponential model’ we included an empirical exponential relation in the model. When the linear model was used the mineral distribution slightly changed the apparent stiffness, the difference varied between an 8% decrease and a 4% increase compared to the uniform model with the same BMD. The exponential model resulted in up to 20% increased apparent stiffness in the main load-bearing direction. A thin less mineralized surface layer (28 μm) and highly mineralized interstitial bone (mimicking mineralization resulting from anti-resorptive treatment) resulted in the highest stiffness. This could explain large reductions in fracture risk resulting from small increases in BMD. The non-uniform mineral distribution could also explain why bone tissue stiffness determined using nano-indentation is usually higher than finite element (FE)-determined stiffness. We conclude that the non-uniform mineral distribution in trabeculae does affect the mechanical properties of cancellous bone and that the tissue stiffness determined using FE-modeling could be improved by including detailed information about mineral distribution in trabeculae in the models.  相似文献   

6.
Trabecular bone loss in human vertebral bone is characterised by thinning and eventual perforation of the horizontal trabeculae. Concurrently, vertical trabeculae are completely lost with no histological evidence of significant thinning. Such bone loss results in deterioration in apparent modulus and strength of the trabecular core. In this study, a voxel-based finite element program was used to model bone loss in three specimens of human vertebral trabecular bone. Three sets of analyses were completed. In Set 1, strain adaptive resorption was modelled, whereby elements which were subject to the lowest mechanical stimulus (principal strain) were removed. In Set 2, both strain adaptive and microdamage mechanisms of bone resorption were included. Perforation of vertical trabeculae occurred due to microdamage resorption of elements with strains that exceeded a damage threshold. This resulted in collapse of the trabecular network under compression loading for two of the specimens tested. In Set 3, the damage threshold strain was gradually increased as bone loss progressed, resulting in reduced levels of microdamage resorption. This mechanism resulted in trabecular architectures in which vertical trabeculae had been perforated and which exhibited similar apparent modulus properties compared to experimental values reported in the literature. Our results indicate that strain adaptive remodelling alone does not explain the deterioration in mechanical properties that have been observed experimentally. Our results also support the hypothesis that horizontal trabeculae are lost principally by strain adaptive resorption, while vertical trabeculae may be lost due to perforation from microdamage resorption followed by rapid strain adaptive resorption of the remaining unloaded trabeculae.  相似文献   

7.
Determining accurate density-mechanical property relationships for trabecular bone is critical for correct characterization of this important structure-function relation. When testing any excised specimen of trabecular bone, an unavoidable experimental artifact originates from the sides of the specimen where peripheral trabeculae lose their vertical load-bearing capacity due to interruption of connectivity, a phenomenon denoted here as the 'side-artifact'. We sought in this study to quantify the magnitude of such side-artifact errors in modulus measurement and to do so as a function of the trabecular architecture and specimen size. Using parametric computational analysis of high-resolution micro-CT-based finite-element models of cores of elderly human vertebral trabecular bone, a specimen-specific correction factor for the side-artifact was quantified as the ratio of the side-artifact-free apparent modulus (Etrue) to the apparent modulus that would be measured in a typical experiment (Emeasured). We found that the width over which the peripheral trabeculae were mostly unloaded was between 0.19 and 0.58 mm. The side-artifact led to an underestimation error in Etrue of over 50% in some specimens, having a mean (+/-SD) of 27+/-11%. There was a trend for the correction factor to linearly increase as volume fraction decreased (p=0.001) and as mean trabecular separation increased (p<0.001). Further analysis indicated that the error increased substantially as specimen size decreased. Two methods used for correcting for the side-artifact were both successful in bringing Emeasured into statistical agreement with Etrue. These findings have important implications for the interpretation of almost all literature data on trabecular bone mechanical properties since they indicate that such properties need to be adjusted to eliminate the substantial effects of side-artifacts in order to provide more accurate estimates of in situ behavior.  相似文献   

8.
Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.  相似文献   

9.
Small endosseous implants, such as screws, are important components of modern orthopedics and dentistry. Hence they have to reliably fulfill a variety of requirements, which makes the development of such implants challenging. Finite element analysis is a widely used computational tool used to analyze and optimize implant stability in bone. For these purposes, bone is generally modeled as a continuum material. However, bone failure and bone adaptation processes are occurring at the discrete level of individual trabeculae; hence the assessment of stresses and strains at this level is relevant. Therefore, the aim of the present study was to investigate how peri-implant strain distribution and load transfer between implant and bone are affected by the continuum assumption. We performed a computational study in which cancellous screws were inserted in continuum and discrete models of trabecular bone; axial loading was simulated. We found strong differences in bone-implant stiffness between the discrete and continuum bone model. They depended on bone density and applied boundary conditions. Furthermore, load transfer from the screw to the surrounding bone differed strongly between the continuum and discrete models, especially for low-density bone. Based on our findings we conclude that continuum bone models are of limited use for finite element analysis of peri-implant mechanical loading in trabecular bone when a precise quantification of peri-implant stresses and strains is required. Therefore, for the assessment and improvement of trabecular bone implants, finite element models which accurately represent trabecular microarchitecture should be used.  相似文献   

10.
The elastic behaviour of trabecular bone is a function not only of bone volume and architecture, but also of tissue material properties. Variation in tissue modulus can have a substantial effect on the biomechanical properties of trabecular bone. However, the nature of tissue property variation within a single trabecula is poorly understood. This study uses nanoindentation to determine the mechanical properties of bone tissue in individual trabeculae. Using an ovariectomised ovine model, the modulus and hardness distribution across trabeculae were measured. In both normal and ovariectomised bone, the modulus and hardness were found to increase towards the core of the trabeculae. Across the width of the trabeculae, the modulus was significantly less in the ovariectomised bone than in the control bone. However, in contrast to this hardness was found not to differ significantly between the two groups. This study provides valuable information on the variation of mechanical material properties in healthy and diseased trabecular bone tissue. The results of the current study will be useful in finite element modelling where more accurate values of trabecular bone modulus will enable the prediction of the macroscale behaviour of trabecular bone.  相似文献   

11.
The mechanical properties of cancellous bone and the biological response of the tissue to mechanical loading are related to deformation and strain in the trabeculae during function. Due to the small size of trabeculae, their motion is difficult to measure. To avoid the need to measure trabecular motions during loading the finite element method has been used to estimate trabecular level mechanical deformation. This analytical approach has been empirically successful in that the analytical models are solvable and their results correlate with the macroscopically measured stiffness and strength of bones. The present work is a direct comparison of finite element predictions to measurements of the deformation and strain at near trabecular level. Using the method of digital volume correlation, we measured the deformation and calculated the strain at a resolution approaching the trabecular level for cancellous bone specimens loaded in uniaxial compression. Smoothed results from linearly elastic finite element models of the same mechanical tests were correlated to the empirical three-dimensional (3D) deformation in the direction of loading with a coefficient of determination as high as 97% and a slope of the prediction near one. However, real deformations in the directions perpendicular to the loading direction were not as well predicted by the analytical models. Our results show, that the finite element modeling of the internal deformation and strain in cancellous bone can be accurate in one direction but that this does not ensure accuracy for all deformations and strains.  相似文献   

12.
Trabecular architecture plays a major role in bone mechanics. Osteoporosis leads to a transition from a plate-like to a more rod-like trabecular morphology, which may contribute to fracture risk beyond that predicted by changes in density. In this study, microstructural finite element analysis results were analyzed using individual trabeculae segmentation (ITS) to identify the type and orientation of trabeculae where tissue yielded during compressive overloads in two orthogonal directions. For both apparent loading conditions, most of the yielded tissue was found in longitudinally oriented plates. However, the primary loading mode of yielded trabeculae was axial compression with superposed bending for on-axis loading in contrast to bending for transverse loading. For either loading direction, most plate-like trabeculae yielded in the same loading mode, regardless of their orientation. In contrast, rods oriented parallel to the loading axis yielded in compression, while rods oblique or perpendicular to the loading axis yielded in combined bending and tension. The predominance of tissue yielding in plates during both on-axis and transverse overloading explains why on-axis overloading is detrimental to the off-axis mechanical properties. At the same time, a large fraction of the tissue in rod-like trabeculae parallel to the loading direction yielded in both on-axis and transverse loading. Hence, rods may be more likely to be damaged and potentially resorbed by damage mediated remodeling.  相似文献   

13.
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).  相似文献   

14.
In both cortical and trabecular bone loaded in fatigue, the stress-strain loops translate along the strain axis. Previous studies have suggested that this translation is the result of creep associated with the mean stress applied in the fatigue test. In this study, we measured the residual strrain (corresponding to the translation of the stress-strain loops) in fatigue tests on bovine trabecular bone and compared it to an upper bound estimate of the creep strain in each test. Our results indicate that the contribution of creep to the translation of the stress-strain loops is negligible in bovine trabecular bone. These results, combined with models for fatigue in lower density bone, suggest that that creep does not contribute to the fatigue of normal human bone. Creep may make a significant contribution to fatigue in low-density osteoporotic bone in which trabeculae have resorbed, reducing the connectivity of the trabecular structure.  相似文献   

15.
The fatigue properties of trabecular bone tissue (single trabeculae) and similarly sized cortical bone specimens from human tibia were experimentally determined on a microstructural level using four-point bending cyclic tests, and they were compared based on modulus, mineral density, and microstructural characteristics. The results showed that trabecular specimens had significantly lower moduli and lower fatigue strength than cortical specimens, despite their higher mineral density values. Fracture surface and microdamage analyses illustrated different fracture and damage patterns between trabecular and cortical bone tissue, depending upon their microstructural characteristics. Based on the results from mechanical tests and qualitative observations, a possible mechanical role of the cement lines in trabecular tissue microfracture was suggested.  相似文献   

16.
A computational simulation method for three-dimensional trabecular surface remodeling was proposed, using voxel finite element models of cancellous bone, and was applied to the experimental data. In the simulation, the trabecular microstructure was modeled based on digital images, and its morphological changes due to surface movement at the trabecular level were directly expressed by removing/adding the voxel elements from/to the trabecular surface. A remodeling simulation at the single trabecular level under uniaxial compressive loading demonstrated smooth morphological changes even though the trabeculae were modeled with discrete voxel elements. Moreover, the trabecular axis rotated toward the loading direction with increasing stiffness, simulating functional adaptation to the applied load. In the remodeling simulation at the trabecular structural level, a cancellous bone cube was modeled using a digital image obtained by microcomputed tomography (microCT), and was uniaxially compressed. As a result, the apparent stiffness against the applied load increased by remodeling, in which the trabeculae reoriented to the loading direction. In addition, changes in the structural indices of the trabecular architecture coincided qualitatively with previously published experimental observations. Through these studies, it was demonstrated that the newly proposed voxel simulation technique enables us to simulate the trabecular surface remodeling and to compare the results obtained using this technique with the in vivo experimental data in the investigation of the adaptive bone remodeling phenomenon.  相似文献   

17.
18.
The determining factors for the fixation of uncemented screws in bone are the bone-implant interface and the peri-implant bone. The goal of this work was to explore the role of the peri-implant bone architecture on the mechanics of the bone-implant system. In particular, the specific aims of the study were to investigate: (i) the impact of the different architectural parameters, (ii) the effects of disorder, and (iii) the deformations in the peri-implant region. A three-dimensional beam lattice model to describe trabecular bone was developed. Various microstructural features of the lattice were varied in a systematic way. Implant pull-out tests were simulated, and the stiffness and strength of the bone-implant system were computed. The results indicated that the strongest decrease in pull-out strength was obtained by trabecular thinning, whereas pull-out stiffness was mostly affected by trabecular removal. These findings could be explained by investigating the peri-implant deformation field. For small implant displacements, a large amount of trabeculae in the peri-implant region were involved in the load transfer from implant to bone. Therefore, trabecular removal in this region had a strong negative effect on pull-out stiffness. Conversely, at higher displacements, deformations mainly localized in the trabeculae in contact with the implant; hence, thinning those trabeculae produced the strongest decrease in the strength of the system. Although idealized, the current approach is helpful for a mechanical understanding of the role played by peri-implant bone.  相似文献   

19.
Microdamage occurs in trabecular bone under normal loading, which impairs the mechanical properties. Architectural degradation associated with osteoporosis increases damage susceptibility, resulting in a cumulative negative effect on the mechanical properties. Treatments for osteoporosis could be targeted toward increased bone mineral density, improved architecture, or repair and prevention of microdamage. Delineating the relative roles of damage and architectural degradation on trabecular bone strength will provide insight into the most beneficial targets. In this study, damage was induced in bovine trabecular bone samples by axial compression, and the effects on the mechanical properties in shear were assessed. The damaged shear modulus, shear yield stress, ultimate shear stress, and energy to failure all depended on induced damage and decreased as the architecture became more rod-like. The changes in ultimate shear strength and toughness were proportional to the decrease in shear modulus, consistent with an effective decrease in the cross-section of trabeculae based on cellular solid analysis. For typical ranges of bone volume fraction in human bone, the strength and toughness were much more sensitive to decreased volume fraction than to induced mechanical damage. While ultimately repairing or avoiding damage to the bone structure and increasing bone density both improve mechanical properties, increasing bone density is the more important contributor to bone strength.  相似文献   

20.
Variations in yield strains for trabecular bone within a specific anatomic site are only a small fraction of the substantial variations that exist for elastic modulus and strength, and yet the source of this uniformity is not known. Our goal was to investigate the underlying mechanisms by using high-resolution, materially nonlinear finite element models of 12 human femoral neck trabecular bone specimens. The finite element models, used to obtain apparent yield strains in both tension and compression, assumed that the tissue-level yield strains were the same across all specimens. Comparison of the model predictions with the experimental data therefore enabled us to isolate the combined roles of volume fraction and architecture from the role of tissue material properties. Results indicated that, for both tensile and compressive loading, natural variations in volume fraction and architecture produced a negligible coefficient of variation (less than 3%) in apparent yield strains. Analysis of tissue-level strains showed that while bending of individual trabeculae played only a minor role in the apparent elastic behavior, the combined effects of this bending and tissue-level strength asymmetry produced apparent-level failure strains in compression that were 14% lower than those at the tissue level. By contrast, tissue and apparent-level yield strains were equivalent for tensile loading. We conclude that the uniformity of apparent yield strains is primarily the result of the highly oriented architecture that minimizes bending. Most of the variation that does occur is the result of the non-uniformity of the tissue-level yield strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号