首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]zeatin riboside was supplied in physiological quantities to pea (Pisum sativum L. cv Greenfeast) plants by replacing the root tip with a small vial containing [3H]zeatin riboside, to simulate the normal supply of cytokinin. Radioactivity was transported to the root nodules. Analysis by two-dimensional thin layer chromatography revealed that little3H remained as zeatin riboside in root or nodule tissue at the end of the labeling period (2, 5, or 8 d) and suggested that the following compounds were metabolites of [3H]zeatin riboside: zeatin, adenosine, adenine, the O-glucosides of zeatin and zeatin riboside, nucleotides of adenine and zeatin, and the dihydro-derivatives of many of these compounds. The O-glucosides (and in particular, O-β-D-glucopyranosyl-9-β-D-ribofuranosylzeatin) appeared to be more prominent metabolites in the effective nodules formed by strain ANU897 than in the ineffective nodules produced by strain ANU203. However, no other appreciable differences were detected between effective and ineffective nodules in their metabolism of zeatin riboside. There were few marked differences between root and nodule tissue; however, in some experiments, the nodules contained a higher proportion of O-glucoside metabolites, and generally root tissue contained a greater proportion of zeatin and/or dihydro-zeatin, zeatin riboside and/or dihydrozeatin riboside, adenine and the nucleotides of zeatin and adenine, as metabolites.  相似文献   

2.
[3H]Zeatin riboside was supplied to intact pea (Pisum sativum) plants either onto the leaves or onto the root nodules. When applied directly to nodules, approximately 70% of recovered radioactivity remained in the nodules, approximately 15% was detected in the root system, and 15% was in the shoot. However, when supplied to the leaves, little 3H was transported, with approximately 0.05% of recovered radioactivity being found in the root system and nodules. On a fresh weight basis, nodules accumulated more 3H than the parent root. In both types of studies, metabolites with an intact zeatin moiety were detected in root nodules.

In all experiments, two-dimensional thin layer chromatography revealed that little 3H remained as zeatin riboside in root or nodule tissue at the end of the labeling period. Nodules metabolized [3H]zeatin riboside to the following cytokinins/cytokinin metabolites: zeatin, adenosine, adenine, the O-glucosides of zeatin and zeatin riboside, lupinic acid, nucleotides of adenine and zeatin, and the dihydro derivatives of many of these compounds.

Although a few small differences were observed, there were no major differences between root and nodule tissue in their metabolism of [3H] zeatin riboside. Furthermore, any differences between effective and ineffective nodules were generally minor.

  相似文献   

3.
Radioimmunoassays (RIA), employing antisera raised in rabbits against bovine serum albumin conjugates of zeatin riboside, dihydrozeatin riboside, and isopentenyladenosine, were used to estimate levels of these cytokinins and their corresponding bases in samples of effective (nitrogen-fixing, Fix+), ineffective (nonnitrogen-fixing, Fix) pea root nodules and uninoculated roots. Assays were done on extracts of nodule tissue, 1–2 g fresh weight, or approximately 10 g fresh weight of root tissue, and high specific activity [3H]zeatin riboside was added during preparation of the extract for use as a recovery marker. Two different purification procedures were employed, each involving several purification steps. High performance liquid chromatography (HPLC) was the final step in both procedures. Fractions from HPLC were analyzed by RIA using the appropriate antiserum. The cytokinins, zeatin, zeatin riboside, dihydrozeatin riboside, isopentenyl adenine, and isopentenyladenosine were detected and quantified in nodule tissue, and similarly, in root tissue (with the exception of zeatin, which we were unable to quantify in root tissue). Cytokinin levels in nodule tissue were higher than those in root tissue. The major cytokinins detected in nodule tissue were zeatin, followed by zeatin riboside and then dihydrozeatin riboside. The levels of zeatin and zeatin riboside estimated in nodules in the present study by RIA were of the same order of magnitude, though tending to be a little higher, than values obtained previously by bioassay. Dihydrozeatin riboside was identified with confidence for the first time in nodule tissue. There was a general decline with age in cytokinin levels in nodules, but no major qualitative change in nodule cytokinins with age. For theRhizobium strains examined, the data did not indicate a clear correlation between nodule cytokinin levels and the effectiveness of nodules in nitrogen fixation.  相似文献   

4.
The cytokinins in certain fractions prepared from extracts of immature sweet-corn (Zea mays L.) kernels using polystyrene ion-exchange resins have been further investigated. Cytokinins active in the radish cotyledon bioassay were purified from these fractions and identified as 9--D-glucopyranosylzeatin, 9--D-glucopyranosyldihydrozeatin, O--D-glucopyranosylzeatin. and O--D-glucopyranosyl-9--D-ribofuranosylzeatin. In addition, compounds which resemble zeatin and its glycosides in chromatographic behaviour and in ultraviolet absorption characteristics were purified from extracts of the same material by high-performance liquid chromatography. In addition to zeatin and zeatin riboside, the following compounds were identified unambiguously: O--D-glucopyranosyl-9--D-ribofuranosyldihydrozeatin, O--D-glucopyranosyldihydrozeatin, and hihydrozeatin riboside. A further compound was tentatively identified as O--D-glucopyranosylzeatin, and at least two unidentified compounds appeared to be new derivatives of zeatin. In identifying the above compounds, chemical-ionization mass spectrometry proved to be an invaluable complementary technique, yielding spectra showing intense protonated-molecular-ion peaks and also prominent structure-related fragmentation that was either not evident or very minor in the electron-impact spectra. An assessment of the relative importance of the various possible mechanisms for cytokinin modification and inactivation in mature sweet-corn kernels was made by supplying [3H]zeatin and [3H]zeatin riboside to such kernels after excision. The principal metabolites of zeatin were adenine nucleotides, adenosine and adenine, while little of the metabolite radioactivity was attributable to known O-glucosides. Adenine nucleotides and adenine were the principal metabolites of zeatin riboside, while lesser metabolites were identified as adenosine, dihydrozeatin, and the O-glucosides of dihydrozeatin and dihydrozeatin riboside. Side-chain cleavage, rather than side-chain modification, appears to be the dominant form of cytokinin metabolism in mature sweet-corn kernels.Abbreviations CI-MS chemical-ionization mass spectrum - EIMS electron-impact mass spectrum - GC-MS combined gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - M+ molecular ion - MH+ protonated molecular ion - TLC thin-layer chromatography - TMS trimethylsilyl - UV ultraviolet XXVII=Letham et al. (1979)  相似文献   

5.
The activity, uptake and metabolism of cytokinin metabolites was determined in soybean (Glycine max (L.) Merr.) callus tissue. The following activity sequence was established: zeatin riboside (ZR)>zeatin (Z)>O-glucosides of Z, ZR and their dihydro derivatives>lupinic acid (an alanine conjugate of Z)>7- and 9-glucosides of Z which were almost inactive. The 7- and 9-glucosides and lupinic acid were taken up very slowly by the callus tissue and showed great metabolic stability, but some degradation to 7-glucosyladenine, 9-glucosyladenine and the 9-alanine conjugate of adenine occurred. Compared with its aglycone, O-glucosyl-ZR exhibited slow uptake and greatly enhanced stability but gas chromatographic-mass spectrometric analysis showed that appreciable amounts were hydrolyzed to ZR in the tissue. Both ZR and O-glucosyl-ZR were metabolised extensively, with adenine, adenosine, and adenine nucleotide(s) as the major metabolites. A diversity of minor metabolites of ZR were identified, including O-glucosides, lupinic acid and dihydrolupinic acid. The metabolism of ZR was suppressed by 3-isobutyl-1-methylxanthine. When compared with the soybean callus line normally used for cytokinin bioassays (cv. Acme, cotyledonary callus), related callus lines exhibited greatly differing growth responses to cytokinin: however, these were not reflected in marked differences in metabolism.Abbreviations GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - LA lupinic acid - OGZR O--D-glucopyranosylzeatin riboside - TLC thin-layer chromatography - IMX 3-isobutyl-1-methylxanthine - Z zeatin - ZR zeatin riboside  相似文献   

6.
[3H]zeatin was supplied through the transpiration stream to de-rooted lupin (Lupinus angustifolius L.) seedlings. The following previously known metabolites were identified chromatographically: 5-phosphates of zeatin riboside and dihydrozeatin riboside, adenosine-5-phosphate, zeatin riboside, zeatin-7-glucopyranoside, zeatin-9-glucopyranoside, adenine, adenosine and dihydrozeatin. Five new metabolites were purified; four of these contain an intact zeatin moiety. Two were identified unequivocally, one as l--[6-(4-hydroxy-3-methylbut-trans-2-enylamino)-purin-9-yl]alanine, a metabolite now termed lupinic acid, and the second as O--d-glucopyranosylzeatin. These two compounds were the major metabolites formed when zeatin solution (100 M) was supplied to the de-rooted seedlings. The radioactivity in the xylem sap of intact seedlings, supplied with [3H]zeatin via the roots, was largely due to zeatin, dihydrozeatin and zeatin riboside. When [3H]zeatin (5 M) was supplied via the transpiration stream to de-rooted Lupinus luteus L. seedlings, the principal metabolite in the lamina was adenosine, while in the stem nucleotides of zeatin and adenine were the dominant metabolites. O-Glucosylzeatin and lupinic acid were also detected as metabolites. The level of the latter varied greatly in the tissues of the shoot, and was greatest in the lower region of the stem and in the expanding lamina. Minor metabolites also detected chromatographically were: (a) dihydrolupinic acid, (b) a partially characterized metabolite which appears to be a 9-substituted adenine (also formed in L. angustifolius), (c) glucosides of zeatin riboside and/or dihydrozeatin riboside, and (d) O-glucosyldihydrozeatin. While lupinic acid supplied exogenously to L. luteus leaves underwent little metabolism, chromatographic studies indicated that O-glucosylzeatin was converted to its riboside, the principal metabolite formed, and also to adenosine, zeatin and dihydrozeatin. A thinlayer chromatography procedure for separating zeatin, dihydrozeatin, zeatin riboside and dihydrozeatin riboside is described.Abbreviations Me3Si trimethylsilyl - TLC thin-layer chromatography - UV ultraviolet XXIV=Gordon et al., 1975  相似文献   

7.
C. W. Parker  D. S. Letham 《Planta》1974,115(4):337-344
Summary [3H] Zeatin was supplied to Zea mays L. seedlings with roots excised; the metabolites identified were adenosine-5-phosphate, adenosine, adenine, and 7-glucosylzeatin (a minor metabolite). The principal metabolites formed from zeatin by the roots of intact Z. mays seedlings were adenosine-5-phosphate, zeatin riboside-5-phosphate, zeatin riboside, adenine, adenosine and an unknown compound termed Y. This was isolated and identified as 9-glucosylzeatin. This glucoside also appeared to form from zeatin in cultured embryonic tissue of Z. mays.Part XVII: Gordon et al. (1973)  相似文献   

8.
When [3H]dihydrozeatin riboside and [3H]zeatin riboside were supplied to soybean (Glycine max L.) explants (comprising one leaf, associated pods, and subtending stem) via the xylem at mid to late podfill, 0.1% of the supplied 3H was extracted from the seeds. The distribution of 3H in the explants was similar to that bound previously following uptake of [3H]zeatin riboside at earlier stages of pod development. Metabolites formed in the explants from 3H-labeled zeatin, zeatin riboside, and dihydrozeatin riboside were identified and related to the endogenous cytokinins shown to be present. When zeatin riboside and zeatin were supplied for 1 hour, zeatin nucleotide was the principal metabolite formed and this appeared to be the precursor of the other metabolites detected subsequently. Explants supplied with zeatin riboside or dihydrozeatin riboside for 1 hour, and then transferred to water for 20 to 24 hours, yielded leaf blades in which the main metabolites were O-glucosyldihydrozeatin, adenosine, and adenine. The metabolism of zeatin riboside in blades of explants at pre-podfill, early podfill, and mid to late podfill did not differ appreciably. The results are discussed in relation to leaf senescence and seed development.  相似文献   

9.
Roots of young Norway spruce seedlings were incubated under hydroculture conditions in a synthetic nutrient medium containing either 3H-isopentenyladenosine, isopentenyladenosine or zeatin riboside. When feeding with 3H-isopentenyladenosine a new radiaolabelled metabolite was found in the feeding solution as well as in root extracts. Isopentenyladenosine and zeatin riboside were metabolised and for both compounds an unknown metabolite was detected in the feeding solution. The metabolites were purified by solid phase extraction, HPLC and partially characterised. A major characteristic of the metabolites is their reactivity in the presence of NH4OH, which results in the formation of the cytokinin bases isopentenyladenine or zeatin, respectively. UV-spectra and the chemical characteristics indicate that the new metabolites are closely related. The GC-MS analysis revealed, that the metabolites are true derivatives of isopentenyladenine and zeatin. The biogenesis of the new metabolites is discussed with regard to plant microbial interactions.Abbreviations Ck(s) = cytokinin(s) - GC-MS = gas chromatography-mass spectrometry - iP = isopentenyladenine - [9R]iP = isopentenyladenosine - [9G]iP = isopentenyladenine-9-glucoside - [9R-MP]iP = isopentenyladenosine-5-monophosphate - Z = trans-zeatin - [9R]Z = trans-zeatin riboside  相似文献   

10.
3H-labelled zeatin riboside (ZR) was applied to pod walls of intactLupinus luteus L. plants. Metabolites present in mature, dry seeds were zeatin nucleotide (ZNT), zeatin riboside (ZR) and zeatin (Z), zeatin O-glucosides and lupinic acid (LA), and the corresponding dihydro-derivatives of the cytokinins listed. Endogenous cytokinins were rapidly metabolised in germinating seeds. In seeds labelled with [3H]ZR for 90 min following a 2 h period of imbibition in water, ZR was actively converted to ZNT and dihydro-ZNT but the prevailing CTK was Z in cotyledons and ZR in embryo axes (EA); later LA and dihydro-LA, and O-glucoside metabolites accumulated. When [3H] zeatin was introduced into imbibing seeds, it was converted to dihydro-ZNT, ZNT, dihydro-ZR, ZR and dihydro-Z; in EA of the Z-labelled seeds, dihydro-ZR and ZR were the main cytokinins. After incubation of the Z-labelled seeds for 6 h in water, the ratios of dihydro-ZNT: ZNT and dihydro-ZR: ZR were, respectively, 20: 1 and 3.4: 1 in EA, and 3.5: 1 and 1.4: 1 in cotyledons.  相似文献   

11.
L. M. S. Palni  L. Burch  R. Horgan 《Planta》1988,174(2):231-234
The stability of [3H]zeatin riboside supplied to freshly excised tobacco pith explants was found to be inversely related to -naphthaleneacetic acid concentration in the incubation medium. At higher concentrations of -naphthaleneacetic acid greater breakdown of [3H]zeatin riboside was indicated by higher levels of degradative metabolites (adenine, adenosine and adenosine nucleotides) formed. This auxin effect on cytokinin metabolism appears to be mediated, at least in part, through cytokinin oxidase. The results of in-vitro assays carried out with partially purified enzyme from corn kernels substantiale this conclusion. These findings are discussed in relation to recent observations of auxin and cytokinin levels in crown-gall tumours with altered morphology.Abbreviations FPLC fast protein liquid chromatography - HPLC high-performance liquid chromatography - IP isopentenyladenine - NAA naphthaleneacetic acid - ZR zeatin riboside  相似文献   

12.
C. W. Parker  D. S. Letham 《Planta》1973,114(3):199-218
Summary [3H]Zeatin was supplied through the transpiration stream to radish (Raphanus sativus L.) seedlings with roots excised. Formation of dihydrozeatin was not detected but numerous other metabolites were formed, including adenine, adenosine, AMP, zeatin riboside and zeatin riboside-5-monophosphate. However, in labelled seedlings which had been left in water for 15 h, an unknown compound (raphanatin) was the dominant metabolite and accounted for about 25% of the total radioactivity extracted. A procedure for the isolation of this metabolite was devised and yielded 70 g from 1600 seedlings. Raphanatin was characterized by mass and ultraviolet spectra and has been identified as 7-glucosylzeatin. It is an active and very stable metabolite which was located mainly in the cotyledon laminae and may be a storage form of the hormone. In contrast, labelled nucleotides, the other major metabolites of zeatin, were largely confined to the hypocotyls and petioles. Zeatin riboside-5-monophosphate was the dominant metabolite in hypocotyls of de-rooted seedlings supplied with zeatin for 0.5–2 h. The majority of the radioactivity in the xylem sap was due to zeatin, but about 10% was present as zeatin riboside; nucleotides accounted for less than 10% of the radioactivity and labelled raphanatin was not detected.For Part XV, see Letham (1973).  相似文献   

13.
Kinetic studies of formation of glucosides of 6-benzylaminopurine (BAP) in excised radish cotyledons indicated that the 3-, 7-, and 9-glucosides (N-glucosides) were each formed directly from BAP. The 7- and 9-glucosides of BAP and the 7-glucoside of zeatin exhibited great stability in the cotyledons, but the 3-glucoside was converted to free BAP and to the 7- and 9-glucosides of BAP. When3H-labeled zeatin was supplied to developed cotyledons, at high concentrations (100 M), 7-glucosylzeatin was the principal metabolite, but an appreciable proportion of the extracted3H was due to O-glucosylzeatin. In immature cotyledons, as used in the radish cotyledon cytokinin bioassay, this O-glucoside was shown to be converted into zeatin 7-glucoside probably via free zeatin.Metabolism of BAP and zeatin in radish cotyledons was studied in relation to cytokinin-induced cotyledon expansion. Cytokinin N-glucosides were not metabolites responsible for the observed cytokinin-induced expansion, and were not detoxification products, or deactivation products formation of which was coupled with cytokinin action. However, the free base, its riboside, and nucleotide were possible active forms of BAP associated with cotyledon expansion. The possible significance of cytokinin N-glucosides is discussed.Senescent and nonsenescent cotyledons differed in their metabolism of BAP, zeatin, and zeatin riboside. Senescence was associated principally with a reduction in ability to form 7-glucosylzeatin, enhanced metabolism to adenine derivatives, and an inability to form appreciable amounts of 3-glucosyl-BAP.A two-dimensional thin layer chromatography (TLC) system, based on adjoining layers of cellulose and silica gel, for separating zeatin metabolites is described. This does not completely separate zeatin and zeatin riboside from the corresponding dihydro-compounds. A reversed phase TLC method for achieving these separations is also reported.  相似文献   

14.
Aqueous solutions of auxin (indole-3-acetic acid,-naphthalene acetic acid, or 2,4-dichlorophenoxyacetic acid) were active in inducing DNA synthesis and mitosis in prewashed tissue explants of mature Jerusalem artichoke tubers. Explants did not respond in this way to aqueous solutions of cytokinin (zeatin, zeatin riboside, 6-benzylaminopurine, or kinetin). The metabolism of [8-3H]zeatin riboside (ZR) was studied in non-dividing and auxin-induced synchronously dividing explants over the first 36 h of culture. ZR was taken up rapidly and to the same extent by both tissues. Sequential analysis of tissue extracts by thin-layer and high-performance-liquid chromatography identified zeatin nucleotide(s) (ZN), O-glucosyl zeatin riboside (OGZR), adenosine, and adenine nucleotide(s) (AN) as the principal metabolites in both tissues. The proportion of radio-activity due to ZR declined steadily and OGZR accumulated steadily at similar rates in both tissues. ZN was the major metabolite in both tissues at 12 h; thereafter ZN continued to accumulate in nondividing tissue, but its level declined in dividing tissue, and a corresponding increase in the levels of AN and adenosine was observed. These treatment differences in cytokinin metabolism were apparent at least 6 h before the onset of mitosis.  相似文献   

15.
A. Fusseder  P. Ziegler 《Planta》1988,173(1):104-109
[3H]Dihydrozeatin supplied to photoautotrophically growing cell suspension cultures of Chenopodium rubrum was rapidly taken up and metabolized by the cells. The predominant metabolites in extracts of the cells were [3H]dihydrozeatin-O-glucoside and [3H]dihydrozeatin riboside-O-glucoside. Both these compounds could be shown to be compartmented within the vacuole, whereas [3H]dihydrozeatin and [3H]dihydrozeatin riboside, which were both present to a minor extent in cell extracts, were both present to a minor extent in cell extracts, were localized predominantly outside the vacuole. Analysis of the culture medium at the end of the 36-h incubation period showed that there had been an efflux of [3H]dihydrozeatin metabolites out of the cells. Whereas [3H]dihydrozeatin riboside was found to be the major extracellular [3H]dihydrozeatin metabolite, the O-glucosides of neither this compound nor [3H]dihydrozeatin could be detected in the medium. The differential compartmentation of [3H]dihydrozeatin metabolites found with the C. rubrum suspension-culture system is discussed with respect to possible mechanisms governing the metabolism of cytokinins in plants cells.Abbreviations (diH)Z dihydrozeatin - (diH) [9R]Z 9--D-ribofuranosyl dihydrozeatin - HPLC high-performance liquid chromatography - ODS octododecyl silica - PEP phosphoenolyruvate  相似文献   

16.
The effects of some nodular cytokinis, zeatin (Z), zeatin riboside (ZR), N6 (2-isopentenyl) adenine (IPA), and N6 (2-isopentenyI) adenosine (IPAS) on nitrate reductase (E.C 1.9.6.1) activity of root nodules ofPhaseolus mungo were investigated. The cytokinis were also tested for their effect on nitrate uptake by nodules. The results show that IPAS is the most effective of all the four cytokinins tested. Z and IPA, which caused higherin vivo activity than ZR and IPAS, stimulated uptake of nitrate by nodules. The other two (ZR and IPAS) while inhibiting uptake showed greaterin vitro activity than Z and IPA. It may be concluded that some cytokinins, in addition to their direct effects on the enzyme, may increase the substrate availability to it, whereas others may have only an direct effect on the enzyme activation or degradation.Deceased.  相似文献   

17.
Cytokinin bases (zeatin and dihydrozeatin) and ribosides (zeatin riboside and dihydrozeatin riboside) were identified as major cytokinins in tobacco xylem sap by radioimmunoassay. When 3H-labelled zeatin riboside or dihydrozeatin riboside were supplied to tobacco plants via the xylem, leaves of differing maturity did not differ appreciably in level of radioactivity or in metabolism of the cytokinin. The major metabolites of zeatin riboside in leaves were adenine, adenosine and adenine nucleotides, whereas that of dihydrozeatin riboside was dihydrozeatin 7-glucoside. Incorporation of [14C]adenine into zeatin was evident in upper green leaves. indicating that young leaves have the capacity to synthesize cytokinins in situ. In contrast, fully expanded green leaves and senescing tobacco leaves exhibited little or no incorporation of [14C]adenine into cytokinins. This difference in cytokinin biosynthetic capacity may contribute to the differing cytokinin levels in leaves of different matirity, and may participate in control of sequential leaf senescence in tobacco.  相似文献   

18.
The movement and metabolism of [8-14C]zeatin applied to theroot nodules of Alnus glutinosa (L.) Gaertn, was investigated.Twenty-four hours after the start of uptake, zeatin and a numberof its metabolites were detected in all parts of the plant.The major radioactive compounds present in a cationic fractionof different plant parts at this time co-chromatographed onSephadex LH20 with zeatin (in nodules, stems, and leaves) andwith zeatin riboside (in roots, stems, and buds). In the roots,in addition to the peak co-chromatographing with zeatin riboside,there was also a prominent unidentified polar peak. The presence of zeatin and zeatin riboside in the stems andleaves was indicated also by chromatographic behaviour in othersystems, effects of permanganate oxidation, and cocrystallisationwith the authentic unlabelled compounds. Biological activitywas exhibited by both peaks in the soybean callus bioassay.Other metabolites in the shoot, possibly active as cytokinins,had the characteristics of dihydrozeatin, zeatin or dihydrozeatin-5'-nucleotide(s),and zeatin or dihydrozeatin glucosides. The gradual disappearancewith time of zeatin and its riboside from the shoot was accompaniedby an increase in the proportion of more polar metabolites. These results are discussed in relation to the possible exportof endogenous cytokinins by the nodules.  相似文献   

19.
A protein which binds specifically to [3H]-zeatin has been isolated from cucumber cotyledons by chromatographic techniques. Its binding to [3H]-zeatin was inhibited remarkably by the addition of non-radioactive cytokinins and the order of inhibition was zeatin > -zeatin riboside > N6-(2-isopentenyl)adenine > N6-(2-isopentenyl)adenosine > N6-benzyl-adenosine > kinetin riboside. This protein behaved as a soluble protein with an apparent molecular size of 43,000 daltons on gel filtration through calibrated Sephadex G-100 column. The dissociation constant, Kd, of the protein-zeatin complex was about 4 × 10–7 M.  相似文献   

20.
The metabolism of [3H]-zeatin (Z) and[3H]-isopentenyladenosine (IPA) in potato tubers was examined inrelation to changes in cytokinin efficacy during postharvest storage anddormancy progression. Exogenous radiolabeled cytokinins were rapidlymetabolizedby dormant and nondormant tubers. Following injection, [3H]-Z wasmetabolized to zeatin riboside, adenine derivatives andzeatin-riboside-5-monophosphate. Four hours after injection, less than60% of the recovered radioactivity was associated with unmetabolized[3H]-Z. [3H]-IPA was also rapidly metabolized to severalmetabolites including: IPA-5-monophosphate, adenine derivatives andzeatin riboside. Four hours after injection, less than 50% of therecovered radioactivity was associated with [3H]-IPA. Cytokininsensitivity was assessed by determining the effects of exogenous Z or IPA ontuber sprouting. Immediately after harvest and during the initial period ofstorage, tubers were dormant and exogenous Z or IPA were completely ineffectivein breaking tuber dormancy. Thereafter, dormant tubers exhibited a gradualincrease in sensitivity to both cytokinins. Cytokinin sensitivity continued toincrease as postharvest storage was extended and dormancy weakened. The lengthof postharvest storage (hence dormancy status) had no apparent effects on themetabolism of either cytokinin. Neither the rate of metabolism nor the natureofmetabolites detected was affected by the length of postharvest storage. Theseresults suggest that changes in cytokinin efficacy in dormant potato tubersduring postharvest storage are not the result of differential catabolism butrather are due to other cellular processes such as hormone perception and/orsignal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号