首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influenza virus is highly contagious in human populations around the world and results in approximately 250,000–500,000 deaths annually. Vaccines and antiviral drugs are commonly used to protect susceptible individuals. However, the antigenic mismatch of vaccines and the emergence of resistant strains against the currently available antiviral drugs have generated an urgent necessity to develop a novel broad-spectrum anti-influenza agent. Here we report that Aronia melanocarpa (black chokeberry, Aronia), the fruit of a perennial shrub species that contains several polyphenolic constituents, possesses in vitro and in vivo efficacy against different subtypes of influenza viruses including an oseltamivir-resistant strain. These anti-influenza properties of Aronia were attributed to two constituents, ellagic acid and myricetin. In an in vivo therapeutic mouse model, Aronia, ellagic acid, and myricetin protected mice against lethal challenge. Based on these results, we suggest that Aronia is a valuable source for antiviral agents and that ellagic acid and myricetin have potential as influenza therapeutics.  相似文献   

2.
A sulphated polysaccharide (SP-2a) from the brown alga Sargassum patens (Kütz.) Agardh (Sargassaceae) was found to significantly inhibit the in vitro replication of both the acyclovir (ACV)-sensitive and -resistant strains of Herpes simplex virus type 1 (HSV-1), in dose-dependent manners, with 50% inhibitions occurring with 1.5–5.3 μg/ml of the polysaccharide. SP-2a exhibited extracellular virucidal activity only against the ACV-sensitive strains, but not the resistant strain, at the concentration of 100 μg/ml. The strongest antiviral activities against the different strains of HSV-1 were observed when this polysaccharide was present during and after adsorption of the virus to host cells. The inhibitory effect of SP-2a on virus adsorption occurred dose-dependently in all the HSV-1 strains tested, and the adsorption of the ACV-resistant DM2.1 strain was reduced by 81.9% (relative to control) with 4 μg/ml of the polysaccharide. This study clearly demonstrated that the antiviral mode of action of SP-2a is mediated mainly by inhibiting virus attachment to host cells, and this sulphated polysaccharide might have different modes of action against the ACV-sensitive and -resistant strains of HSV-1.  相似文献   

3.
A series of isatin-β-thiosemicarbazones have been designed and evaluated for antiviral activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in a plaque reduction assay. Their cytotoxicity was examined using human rhabdomyosarcoma cells (RD cells). Several derivatives of isatin-β-thiosemicarbazone exhibited significant and selective antiviral activity with low cytotoxicity. It was found that the thiourea group at thiosemicarbazone and the NH functionality at isatin were essential for their antiherpetic activity. The synthesis and structure-activity relationship studies are presented.  相似文献   

4.
Primary structures of DNA polymerase (ul30) and thymidine kinase (ul23) genes from several herpes simplex virus type 1 (HSV-1) clinical isolates di ffering in sensitivity to several antiherpetic drugs were determined and compared to those of two laboratory HSV-1 strains one of which (L2) was sensitive and the other (L2/R) was resistant to acyclovir. The phylogenetic sequence analysis showed that the ul30 and ul23 sequences of clinical isolates were close to those of L2, and that ul30 conserved regions differed between HSV-1 isolates and L2 only in point mutations and degenerated substitutions. Several new mutations in the HSV-1 DNA polymerase and thymidine kinase functional domains were identified as substitutions associated with strain resistance to ACV and other antiherpetic drugs.  相似文献   

5.
《Phytomedicine》2014,21(11):1273-1280
Antiviral agents frequently applied for treatment of herpesvirus infections include acyclovir and its derivatives. The antiviral effect of a triterpene extract of birch bark and its major pentacyclic triterpenes, i.e. betulin, lupeol and betulinic acid against acyclovir-sensitive and acyclovir-resistant HSV type 1 strains was examined. The cytotoxic effect of a phytochemically defined birch bark triterpene extract (TE) as well as different pentacyclic triterpenes was analyzed in cell culture, and revealed a moderate cytotoxicity on RC-37 cells. TE, betulin, lupeol and betulinic acid exhibited high levels of antiviral activity against HSV-1 in viral suspension tests with IC50 values ranging between 0.2 and 0.5 μg/ml. Infectivity of acyclovir-sensitive and clinical isolates of acyclovir-resistant HSV-1 strains was significantly reduced by all tested compounds and a direct concentration- and time-dependent antiherpetic activity could be demonstrated. In order to determine the mode of antiviral action, TE and the compounds were added at different times during the viral infection cycle. Addition of these drugs to uninfected cells prior to infection or to herpesvirus-infected cells during intracellular replication had low effect on virus multiplication. Minor virucidal activity of triterpenes was observed, however both TE and tested compounds exhibited high anti-herpetic activity when viruses were pretreated with these drugs prior to infection. Pentacyclic triterpenes inhibit acyclovir-sensitive and acyclovir-resistant clinical isolates of HSV-1 in the early phase of infection.  相似文献   

6.
With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostilbene, a 3,5-dimethoxy analog of resveratrol, is known for its remarkable pharmacological activity. Here, we found that pterostilbene effectively inhibited influenza A virus infection and mainly affected the late stages of viral replication. A mechanistic study showed that the antiviral activity of pterostilbene might promote the induction of antiviral type I interferon and expression of its downstream interferon-stimulated genes during viral infection. The same effect of pterostilbene was also observed in the condition of polyinosinic-polycytidylic acid (poly I:C) transfection. Further study showed that pterostilbene interacted with influenza non-structural 1 (NS1) protein, inhibited ubiquitination mediated degradation of RIG-I and activated the downstream antiviral pathway, orchestrating an antiviral state against influenza virus in the cell. Taken together, pterostilbene could be a promising anti-influenza agent for future antiviral drug exploitation and compounds with similar structures may provide new options for the development of novel inhibitors against influenza A virus (IAV).  相似文献   

7.
Viral infections remain a major threat to humans and animals and there is a crucial need for new antiviral agents especially with the development of resistant viruses. Several Limonium genus members (Plumbaginacea) have been widely used in traditional medicine for the treatment of infections. In this study, we investigated the antiviral activities of different fractions after successive extraction (hexane, dichloromethane, ethanol and methanol) of the halophyte Limonium densiflorum against H1N1 influenza and HSV-1 herpes viruses. In addition, TLC phytochemicals of the shoot extracts were analyzed. All extracts were tested for their cytotoxicity using a fluorometric resazurin assay. The antiviral activity of extracts was tested using four modes of action: virucidal test, pretreatment of cells with samples before infection, attachment assay and plaque reduction test. A good antiviral activity was found with ethanol and methanol extracts. They were most potent in HSV-1 inhibition than H1N1 influenza virus. The most potent inhibition was observed with ethanol extract, and it exhibited high levels of virucidal activity against HSV-1 (IC50 = 6 μg/mL). It inhibits the replication of the virus by 75% when added after penetration of the virus, and by 100% when added during the viral attachment. It protects MDCK cells against influenza virus by abolishing virus to entry into the host cell (IC50 = 55 μg/mL). After attachment of influenza virus, the ethanol extract displayed an appreciable inhibition of virus replication (IC50 = 193 μg/mL). Methanol extract showed a moderate antiviral capacity against both viruses. While dichloromethane has excellent antiherpes potential, results were inappropriate because it was toxic to Vero cells, hexane extract has no effect. TLC analysis of these extracts showed that flavonoids and saponins were the major classes of natural products found in the shoot extracts that may be responsible for these antiviral activities.  相似文献   

8.
Development of new and effective anti-influenza drugs is critical for the treatment of influenza virus infection. The polymerase basic 2 (PB2) subunit as a core subunit of influenza A virus RNA polymerase complex is considered to be an attractive drug target for anti-influenza drug discovery. Dihydromyricetin, as a natural flavonoid, has a wide range of biological activities, but its anti-influenza A virus activity is ambiguous. Here, we found dihydromyricetin could inhibit the replication of a variety of influenza A virus strains. Mechanism studies demonstrated that dihydromyricetin reduced viral polymerase activity via selective inhibition of viral PB2 subunit, and decreased relative amounts of viral mRNA and genomic RNA during influenza A virus infection. The binding affinity and molecular docking analyses revealed that dihydromyricetin interacted with the PB2 cap-binding pocket, functioned as a cap-binding competitor. Interestingly, dihydromyricetin also reduced cellular immune injury by inhibiting TLR3 signaling pathway. Additionally, combination treatment of dihydromyricetin with zanamivir exerted a synergistic anti-influenza effect. Altogether, our experiments reveal the antiviral and anti-inflammatory activities of dihydromyricetin in vitro against influenza virus infection, which provides a new insight into the development of novel anti-influenza drugs.  相似文献   

9.
In this study, a standard strain of HSV-1 (strain SM44) was used to investigate the antiviral activity of the recombinant Cyanovirin-N (CV-N) against Herpes simplex virus type 1 (HSV-1) in vitro and in vivo. Cytopathic effect (CPE) and MTT assays were used to evaluate the effect of CV-N on HSV-1 in Vero cells. The number of copies of HSV-DNA was detected by real-time fluorescence quantitative PCR (FQ-PCR). The results showed that CV-N had a low cytotoxicity on Vero cells with a CC50 of 359.03±0.56 μg/mL, and that it could not directly inactivate HSV-1 infectivity. CV-N not only reduced the CPE of HSV-1 when added before or after viral infection, with a 50% inhibitory concentration (IC50) with 2.26 and 30.16μg/mL respectively, but it also decreased the copies of HSV-1 DNA in infected host cells. The encephalitis model for HSV-1 infection was conducted in Kunming mice, and treated with three dosages of CV-N (0.5, 5 &; 10 mg/kg) which was administered intraperitoneally at 2h, 3d, 5d, 7d post infection. The duration for the appearance of symptoms of encephalitis and the survival days were recorded and brain tissue samples were obtained for pathological examination (HE staining). Compared with the untreated control group, in the 5mg/kg CV-N and 10mg/kg CV-N treated groups, the mice suffered light symptoms and the number of survival days were more than 9d and 14d respectively. HE staining also showed that in 5mg/kg CV-N and 10mg/kg CV-N treated groups, the brain cells did not show visible changes, except for a slight inflammation. Our results demonstrated that CV-N has pronounced antiviral activity against HSV-1 both in vitro and in vivo, and it would be a promising new candidate for anti-HSV therapeutics.  相似文献   

10.
In order to obtain new, cluster-forming antibiotic compounds, teicoplanin pseudoaglycone derivatives containing two lipophilic n-octyl chains have been synthesized. The compounds proved to be poor antibacterials, but, surprisingly, they exhibited potent anti-influenza virus activity against influenza A strains. This antiviral action was related to inhibition of the binding interaction between the virus and the host cell. Related analogs bearing methyl substituents in lieu of the octyl chains, displayed no anti-influenza virus activity. Hence, an interaction between the active, dually n-octylated compounds and the lipid bilayer of the host cell can be postulated, to explain the observed inhibition of influenza virus attachment.  相似文献   

11.
In this study, a novel Hsp90 inhibitor BJ-B11, was synthesized and evaluated for in vitro antiviral activity against several viruses. Possible anti-HSV-1 mechanisms were also investigated. BJ-B11 displayed no antiviral activity against coxsackievirus B3 (CVB3), human respiratory syncytial virus (RSV) and influenza virus (H1N1), but exhibited potent anti-HSV-1 and HSV-2 activity with EC50 values of 0.42 ± 0.18 μM and 0.60 ± 0.21 μM, respectively. Additionally, the inhibitory effects of BJ-B11 against HSV-1 were likely to be introduced at early stage of infection. Our results indicate that BJ-B11 with alternative mechanisms of action is potent as an anti-HSV clinical trial candidate.  相似文献   

12.
The effect of liposomal inclusion on the stability and in vitro antiherpetic activity of Santolina insularis essential oil was investigated. In order to study the influence of vesicle structure on the liposome properties, multilamellar and unilamellar vesicles were prepared by the film method and sonication, respectively. Vesicles were obtained from hydrogenated soya phosphatydilcholine and cholesterol. Formulations were examined for their stability for over one year monitoring the drug leakage from vesicles and the average size distribution. The stability of the incorporated oil was verified by studying its quali-quantitative composition. The antiviral activity was studied against Herpes simplex virus type 1 (HSV-1) by plaque reduction and yield reduction assays. Results showed that Santolina insularis essential oil can be incorporated in high amounts in the prepared liposomes, which successfully prevented its degradation. Moreover, stability studies pointed out that vesicle dispersions were stable for at least one year and neither oil leakage nor vesicle size alteration occurred during this period. Antiviral activity assays demonstrated that Santolina insularis essential oil is effective in inactivating HSV-1 and that the activity is principally due to direct virucidal effects. Free essential oil proved to be more effective than liposomal oil and a different activity was discovered which related to the vesicular structure. The ED50 values, significantly lower when cells were pre-incubated with the essential oil before the virus adsorption, indicate an intracellular mechanism in the antiviral activity of Santolina insularis. Moreover, liposomal Santolina essential oil is non toxic in the range of the concentration tested.  相似文献   

13.
Influenza virus is the cause of significant morbidity and mortality, posing a serious health threat worldwide. Here, we evaluated the antiviral activities of Cryptoporus volvatus extract on influenza virus infection. Our results demonstrated that the Cryptoporus volvatus extract inhibited different influenza virus strain replication in MDCK cells. Time course analysis indicated that the extract exerted its inhibition at earlier and late stages in the replication cycle of influenza virus. Subsequently, we confirmed that the extract suppressed virus internalization into and released from cells. Moreover, the extract significantly reduced H1N1/09 influenza virus load in lungs and dramatically decreased lung lesions in mice. And most importantly, the extract protected mice from lethal challenge with H1N1/09 influenza virus. Our results suggest that the Cryptoporus volvatus extract could be a potential candidate for the development of a new anti-influenza virus therapy.  相似文献   

14.
The control of viral infections, especially those caused by influenza viruses, is of great interest in Public Health. Bio prospection has shown the presence of active principles in the hemolymph of arthropods, and in the salivary gland of ticks, and some of these are of interest for the development of new pharmacological drugs. Ticks lay their eggs in the environment, and to protect them from desiccation and microbial attack they involve the eggs in a waxy layer produced by an organ known as Gené’s Organ. In this study, the eggs wax from tick Amblyomma cajennense (Fabricius) was extracted using ice cold phosphate buffer. The antiviral activity was evaluated with picornavirus and influenza virus. In both cases egg wax was able to inhibit virus replication. For influenza virus, an amount as small as 12 μg/mL of crude egg wax suspension neutralized 128 UHA (hemaglutinant unit) of H1N1 influenza virus. With picornavirus, egg wax led to a 256-fold reduction in virus production by L929 cells. Egg wax was not cytotoxic to VERO, MDCK and L929 cell, being observed that the cell morphology was preserved with concentration as high as 2 mg/mL. In addition no genotoxic effect was observed for Vero cells, suggesting a very interesting potential antiviral activity.  相似文献   

15.
PB2 is an important subunit of influenza RNA-dependent RNA polymerase (RdRP) and has been recognized as a promising target for the treatment of influenza. We herein report the discovery of a new series of PB2 inhibitors containing the skeleton 5-(5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl)pyrazin-2(1H)-one. Compound 12b is the most potent one, which showed KD values of 0.11 μM and 0.19 μM in surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays, respectively. In antiviral activity and cellular cytotoxicity assays, compound 12b showed an EC50 value of 1.025 μM and a CC50 value greater than 100 μM. Molecular docking was also used to predict the binding mode of 12b with PB2. Collectively, this study provides a promising lead compound for subsequent anti-influenza drug discovery targeting PB2.  相似文献   

16.
In vitro antiviral activity of Melaleuca alternifolia essential oil   总被引:1,自引:0,他引:1  
Aims:  To investigate the in vitro antiviral activity of Melaleuca alternifolia essential oil (TTO) and its main components, terpinen-4-ol, α-terpinene, γ-terpinene, p -cymene, terpinolene and α-terpineol.
Methods and Results:  The antiviral activity of tested compounds was evaluated against polio type 1, ECHO 9, Coxsackie B1, adeno type 2, herpes simplex (HSV) type 1 and 2 viruses by 50% plaque reduction assay. The anti-influenza virus assay was based on the inhibition of the virus-induced cytopathogenicity. Results obtained from our screening demonstrated that the TTO and some of its components (the terpinen-4-ol, the terpinolene, the α-terpineol) have an inhibitory effect on influenza A/PR/8 virus subtype H1N1 replication at doses below the cytotoxic dose. The ID50 value of the TTO was found to be 0·0006% (v/v) and was much lower than its CD50 (0·025% v/v). All the compounds were ineffective against polio 1, adeno 2, ECHO 9, Coxsackie B1, HSV-1 and HSV-2. None of the tested compounds showed virucidal activity. Only a slight virucidal effect was observed for TTO (0·125% v/v) against HSV-1 and HSV-2.
Conclusions:  These data show that TTO has an antiviral activity against influenza A/PR/8 virus subtype H1N1 and that antiviral activity has been principally attributed to terpinen-4-ol, the main active component.
Significance and Impact of the Study:  TTO should be a promising drug in the treatment of influenza virus infection.  相似文献   

17.
Influenza virus infection causes thousands of deaths and millions of hospitalizations worldwide every year and the emergence of resistance to anti-influenza drugs has prompted scientists to seek new natural antiviral materials. In this study, we screened 13 different flavonoids from various flavonoid groups to identify the most potent antiviral flavonoid against human influenza A/PR/8/34 (H1N1). The 3-hydroxyl group flavonoids, including 3,2?dihydroxyflavone (3,2?DHF) and 3,4?dihydroxyflavone (3,4?DHF), showed potent anti-influenza activity. They inhibited viral neuraminidase activity and viral adsorption onto cells. To confirm the anti-influenza activity of these flavonoids, we used an in vivo mouse model. In mice infected with human influenza, oral administration of 3,4?DHF significantly decreased virus titers and pathological changes in the lung and reduced body weight loss and death. Our data suggest that 3-hydroxyl group flavonoids, particularly 3,4?DHF, have potent antiviral activity against human influenza A/PR/8/34 (H1N1) in vitro and in vivo. Further clinical studies are needed to investigate the therapeutic and prophylactic potential of the 3-hydroxyl group flavonoids in treating influenza pandemics.  相似文献   

18.
Viral entry inhibitors are of great importance in current efforts to develop a new generation of anti-influenza drugs. Inspired by the discovery of a series of pentacyclic triterpene derivatives as entry inhibitors targeting the HA protein of influenza virus, we designed and synthesized 32 oleanolic acid (OA) analogues in this study by conjugating different amino acids to the 28-COOH of OA. The antiviral activity of these compounds was evaluated in vitro. Some of these compounds revealed impressive anti-influenza potencies against influenza A/WSN/33 (H1N1) virus. Among them, compound 15a exhibited robust potency and broad antiviral spectrum with IC50 values at the low-micromolar level against four different influenza strains. Hemagglutination inhibition (HI) assay and docking experiment indicated that these OA analogues may act in the same way as their parent compound by interrupting the interaction between HA protein of influenza virus and the host cell sialic acid receptor via binding to HA, thus blocking viral entry.  相似文献   

19.
20.
Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06) against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 “Swine” H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号