首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phycobiliproteins, light-harvesting proteins in cyanobacteria, red algae, and cryptophytes, contain phycobilin pigments. Phycobilins are synthesized from biliverdin, which is produced by the oxidative cleavage of the heme porphyrin ring catalyzed by heme oxygenase (HO). Two paralogs of ho (ho1 and ho2) have been identified in the genome of the cyanobacterium, Synechocystis sp. PCC 6803. The recombinant proteins of both paralogs (Syn HO-1 and Syn HO-2) possess in vitro heme degradation activity. We have determined the crystal structures of Syn HO-2 in complex with heme (heme-Syn HO-2) and its reduced and NO bound forms. The heme-Syn HO-2 crystal was a nonmerohedral twin, and detwinned diffraction data were used to refine the structure. Although heme-Syn HO-2 shares common folding with other HOs, the C-terminal segment is ordered and turns back to the heme-binding side. Gel-filtration chromatography analysis and molecular packing in the crystal indicate that heme-Syn HO-2 forms a homodimer, in which the C-terminal ordered segments interact with each other. Because Syn HO-2 is a monomer in the apo state, the dimeric interaction may aid in the selection of the reducing partner but likely does not interfere with heme binding. The heme iron is coordinated by a water molecule in the ferric form, but the distal water is absent in the ferrous form. In all of the Syn HO-2 structures, several water molecules form a hydrogen-bond network at the distal hemepocket, which is involved in HO activity. Upon NO binding, the side-chain conformation of Tyr 156 changes. Tyr 156 is located at the hydrophobic cluster, which interrupts the possible H(+) pathway from the molecular surface to the hemepocket. Thus, Tyr 156 may function as a H(+) shuttle by changing conformation.  相似文献   

3.
The genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a gene (slr2097, glbN) encoding a 123 amino-acid product with sequence similarity to globins. Related proteins from cyanobacteria, ciliates, and green algae bind oxygen and have a pronounced tendency to coordinate the heme iron with two protein ligands. To study the structural and functional properties of Synechocystis sp. PCC 6803 hemoglobin, slr2097 was cloned and overexpressed in Escherichia coli. Purification of the hemoglobin was performed after addition of hemin to the clarified cell lysate. Recombinant, heme-reconstituted ferric Synechocystis sp. PCC 6803 hemoglobin was found to be a stable helical protein, soluble to concentrations higher than 500 microM. At neutral pH, it yielded an electronic absorption spectrum typical of a low-spin ferric species, with maxima at 410 and 546 nm. The proton NMR spectrum revealed sharp lines spread over a chemical shift window narrower than 40 ppm, in support of low-spin hexacoordination of the heme iron. Nuclear Overhauser effects demonstrated that the heme is inserted in the protein matrix to produce one major equilibrium form. Addition of dithionite resulted in an absorption spectrum with maxima at 426, 528, and 560 nm. This reduced form appeared capable of carbon monoxide binding. Optical data also suggested that cyanide ions could bind to the heme in the ferric state. The spectral properties of the putative Synechocystis sp. PCC 6803 hemoglobin confirmed that it can be used for further studies of an ancient hemoprotein structure.  相似文献   

4.
The unicellular red alga, Cyanidium caldarium, synthesizes phycocyanobilin from protoheme via biliverdin IX alpha. In vitro transformation of protoheme to biliverdin IX alpha and biliverdin IX alpha to phycobilins were previously shown to require NADPH, ferredoxin, and ferredoxin-NADP+ reductase, as well as specific heme oxygenase and phycobilin formation enzymes. The role of NADPH in these reactions was investigated in this study. The C. caldarium enzymatic activities that catalyze biliverdin IX alpha formation from protoheme, and phycobilin formation from biliverdin IX alpha, were partially purified by differential (NH4)2SO4 precipitation. The enzyme fractions, when supplemented with a light-driven ferredoxin-reducing photosystem I fraction derived from spinach leaves, catalyzed light-dependent transformation of protoheme to biliverdin IX alpha and biliverdin IX alpha to phycobilins, with or without the addition of NADPH and ferredoxin-NADP+ reductase. In the dark, neither reaction occurred unless NADPH and ferredoxin-NADP+ reductase were supplied. These results indicate that the only role of NADPH in both reactions of phycobilin biosynthesis, in vitro, is to reduce ferredoxin via ferredoxin-NADP+ reductase and that reduced ferredoxin can directly supply the electrons needed to drive both steps in the transformation of protoheme to phycocyanobilin.  相似文献   

5.
6.
The phytobilin chromophores of phycobiliproteins and phytochromes are biosynthesized from heme in a pathway that begins with the opening of the tetrapyrrole macrocycle of protoheme to form biliverdin IXα, in a reaction catalyzed by heme oxygenase. A gene containing an open reading frame with a predicted polypeptide that has a sequence similar to that of a conserved region of animal microsomal heme oxygenases was identified in the published genomic sequence of Synechocystis sp. PCC 6803. This gene, named ho1, was cloned and expressed in Escherichia coli under the control of the lacZ promoter. Cells expressing the gene became green colored due to the accumulation of biliverdin IXα. The size of the expressed protein was equal to the predicted size of the Synechocystis gene product, named HO1. Heme oxygenase activity was assayed in incubations containing extract of transformed E. coli cells. Incubations containing extract of induced cells, but not those containing extract of uninduced cells, had ferredoxin-dependent heme oxygenase activity. With mesoheme as the substrate, the reaction product was identified as mesobiliverdin IXα by spectrophotometry and reverse-phase HPLC. Heme oxygenase activity was not sedimented by centrifugation at 100 000 g. Expression of HO1 increased several-fold during incubation of the cells for 72 h in iron-deficient medium.  相似文献   

7.
An efficient bacterial expression system of cyanobacterium Synechocystis sp. PCC 6803 heme oxygenase gene, ho-1, has been constructed, using a synthetic gene. A soluble protein was expressed at high levels and was highly purified, for the first time. The protein binds equimolar free hemin to catabolize the bound hemin to ferric-biliverdin IX alpha in the presence of oxygen and reducing equivalents, showing the heme oxygenase activity. During the reaction, verdoheme intermediate is formed with the evolution of carbon monoxide. Though both ascorbate and NADPH-cytochrome P450 reductase serve as an electron donor, the heme catabolism assisted by ascorbate is considerably slow and the reaction with NADPH-cytochrome P450 reductase is greatly retarded after the oxy-heme complex formation. The optical absorption spectra of the heme-enzyme complexes are similar to those of the known heme oxygenase complexes but have some distinct features, exhibiting the Soret band slightly blue-shifted and relatively strong CT bands of the high-spin component in the ferric form spectrum. The heme-enzyme complex shows the acid-base transition, where two alkaline species are generated. EPR of the nitrosyl heme complex has established the nitrogenous proximal ligand, presumably histidine 17 and the obtained EPR parameters are discriminated from those of the rat heme oxygenase-1 complex. The spectroscopic characters as well as the catabolic activities strongly suggest that, in spite of very high conservation of the primary structure, the heme pocket structure of Synechocystis heme oxygenase isoform-1 is different from that of rat heme oxygenase isoform-1, rather resembling that of bacterial heme oxygenase, H mu O.  相似文献   

8.
East Kolkata Wetlands is a conserved wetland utilizing sewage and garbage, generated by Kolkata Municipal Corporation area for cultivation purpose. Cyanobacteria are the photosynthetic prokaryotes having bioremedial capacity. We have isolated a cyanobacterium from the sewage recycling fish-pond of East Kolkata Wetlands. Partial sequence of 16S rDNA gene of the isolated strain showed 100% similarity with that of genus Synechocystis. Isolated strain and Synechocystis sp. PCC6803 survived up to 300 mug ml(-1) Pb(2+ )and growth was completely inhibited at 400 mug ml(-1) Pb(2+). All experiments were carried out with 100 mug ml(-1) Pb(2+) in which growth was the maximum. 91.67% of the total Pb(2+) got adsorbed to the outer surface of the cell and 1% of the total Pb(2+) entered the cell of the isolated strain as estimated by atomic absorption spectrometry, but in Synechocystis sp. PCC6803 72.72% adsorbed and 0.96% penetrated. Intracellular and periplasmic depositions of Pb(2+) were observed in both the strain. A filamentous structure developed outside the cell wall of the isolated cyanobacterium, but very little change was observed in Synechocystis sp. PCC6803. ZiaR-SmtB like regulator gene was expressed in both the strains after Pb(2+) induction. The cDNA sequence of ZiaR of the isolated cyanobacterium shows 100% homology with that of Synechocystis sp. PCC6803. Upon Pb(2+) induction, expression of SOD gene increased. cDNA sequence of the SOD gene from the isolated strain showed 98% homology with that of Synechocystis sp. PCC6803. Enzymatic activity of catalase and SOD was also increased. No DNA damage was monitored upon induction with Pb(2+).  相似文献   

9.
10.
The glbN gene for the hemoglobin of Synechoccocus sp. PCC 7002, a cyanobacterium incapable of nitrogen fixation, was cloned and overexpressed in Escherichia coli. The 123-residue protein was purified from inclusion bodies and reconstituted with iron protoporphyrin IX to obtain the ferric form of the holoprotein. Mass spectrometric analysis confirmed the identity of the polypeptide. NMR and optical data demonstrated that the protein so prepared contained a hexacoordinate heme group, as observed in the related globin from Synechocystis sp. PCC 6803 [Scott, N. L., and Lecomte, J. T. J. (2000) Protein Sci. 9, 587-597]. The data were consistent with a similar bis-histidine coordination scheme involving His46 (E10) on the distal side and His70 (F8) on the proximal side. Several aromatic residues were identified in the vicinity of the heme and were used to establish the orientation of the prosthetic group in the polypeptide matrix. In this protein, as in that from Synechocystis sp. PCC 6803, there was a marked preference for the heme orientation in which pyrroles C and D contact the C-E corner of the protein. Both hemoglobins were found capable of forming a product in which the heme is cross-linked to the polypeptide through modification of a vinyl group.  相似文献   

11.
Two isoforms of a heme oxygenase gene, ho1 and ho2, with 51% identity in amino acid sequence have been identified in the cyanobacterium Synechocystis sp. PCC 6803. Isoform-1, Syn HO-1, has been characterized, while isoform-2, Syn HO-2, has not. In this study, a full-length ho2 gene was cloned using synthetic DNA and Syn HO-2 was demonstrated to be highly expressed in Escherichia coli as a soluble, catalytically active protein. Like Syn HO-1, the purified Syn HO-2 bound hemin stoichiometrically to form a heme-enzyme complex and degraded heme to biliverdin IXalpha, CO and iron in the presence of reducing systems such as NADPH/ferredoxin reductase/ferredoxin and sodium ascorbate. The activity of Syn HO-2 was found to be comparable to that of Syn HO-1 by measuring the amount of bilirubin formed. In the reaction with hydrogen peroxide, Syn HO-2 converted heme to verdoheme. This shows that during the conversion of hemin to alpha-meso-hydroxyhemin, hydroperoxo species is the activated oxygen species as in other heme oxygenase reactions. The absorption spectrum of the hemin-Syn HO-2 complex at neutral pH showed a Soret band at 412 nm and two peaks at 540 nm and 575 nm, features observed in the hemin-Syn HO-1 complex at alkaline pH, suggesting that the major species of iron(III) heme iron at neutral pH is a hexa-coordinate low spin species. Electron paramagnetic resonance (EPR) revealed that the iron(III) complex was in dynamic equilibrium between low spin and high spin states, which might be caused by the hydrogen bonding interaction between the distal water ligand and distal helix components. These observations suggest that the structure of the heme pocket of the Syn HO-2 is different from that of Syn HO-1.  相似文献   

12.
To analyze the function of a protein encoded by the open reading frame ssr2998 in Synechocystis sp. PCC 6803, the corresponding gene was disrupted, and the generated mutant strain was analyzed. Loss of the 7.2-kDa protein severely reduced the growth of Synechocystis, especially under high light conditions, and appeared to impair the function of the cytochrome b6 f complex. This resulted in slower electron donation to cytochrome f and photosystem 1 and, concomitantly, over-reduction of the plastoquinone pool, which in turn had an impact on the photosystem 1 to photosystem 2 stoichiometry and state transition. Furthermore, a 7.2-kDa protein, encoded by the open reading frame ssr2998, was co-isolated with the cytochrome b6 f complex from the cyanobacterium Synechocystis sp. PCC 6803. ssr2998 seems to be structurally and functionally associated with the cytochrome b6 f complex from Synechocystis, and the protein could be involved in regulation of electron transfer processes in Synechocystis sp. PCC 6803.  相似文献   

13.
Cell-free extract of the unicellular rhodophyte, Cyanidium caldarium catalyzes enzymatic reduction of biliverdin IX alpha to phycocyanobilin, the chromophore of the light-harvesting phycobiliprotein, phycocyanin. The enzyme activity is soluble, and the required reductant is NADPH. The extract has been separated into three protein fractions, all of which are required to reconstitute biliverdin reduction. One fraction contains ferredoxin, which was identified by its absorption spectrum. This fraction could be replaced with commercial ferredoxin derived from spinach or the red alga, Porphyra umbilicalis. The second protein fraction contains ferredoxin-NADP+ reductase, which was identified by the ability to catalyze ferredoxin-dependent reduction of cytochrome c in the presence of NADPH. This fraction could be replaced with commercial spinach ferredoxin-NADP+ reductase. These two components appear to be identical to previously described components of the algal heme oxygenase system that catalyzes biliverdin IX alpha formation from protoheme in C. caldarium extracts. The third protein fraction, in the presence of the first two (or their commercial counterparts) plus NADPH, catalyzes the reduction of biliverdin IX alpha to phycocyanobilin. The results indicate that the transformation of biliverdin to phycocyanobilin catalyzed by C. caldarium extracts is a ferredoxin-linked reduction process. The results also suggest the possibility that heme oxygenation and biliverdin reduction may occur in C. caldarium on associated enzyme systems.  相似文献   

14.
The agp gene encoding the ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis and glucosylglycerol formation. By in vitro DNA recombination technology, a mutant with partial deletion of agp gene in the cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutant could not synthesize glycogen or the osmoprotective substance glucosylglycerol. In the mutant cells grown in the medium containing 0.9 M NaCl for 96 h, no glucosylglycerol was detected and the total amount of sucrose was 29 times of that of in wild-type cells. Furthermore, the agp deletion mutant could tolerate up to 0.9 M salt concentration. Our results suggest that sucrose might act as a similar potent osmoprotectant as glucosylglycerol in cyanobacterium Synechocystis sp. PCC 6803.  相似文献   

15.
Light harvesting in cyanobacteria is performed by the biliproteins, which are organized into membrane-associated complexes called phycobilisomes. Most phycobilisomes have a core substructure that is composed of the allophycocyanin biliproteins and is energetically linked to chlorophyll in the photosynthetic membrane. Rod substructures are attached to the phycobilisome cores and contain phycocyanin and sometimes phycoerythrin. The different biliproteins have discrete absorbance and fluorescence maxima that overlap in an energy transfer pathway that terminates with chlorophyll. A phycocyanin-minus mutant in the cyanobacterium Synechocystis sp. strain 6803 (strain 4R) has been shown to have a nonsense mutation in the cpcB gene encoding the phycocyanin beta subunit. We have expressed a foreign phycocyanin operon from Synechocystis sp. strain 6701 in the 4R strain and complemented the phycocyanin-minus phenotype. Complementation occurs because the foreign phycocyanin alpha and beta subunits assemble with endogenous phycobilisome components. The phycocyanin alpha subunit that is normally absent in the 4R strain can be rescued by heterologous assembly as well. Expression of the Synechocystis sp. strain 6701 cpcBA operon in the wild-type Synechocystis sp. strain 6803 was also examined and showed that the foreign phycocyanin can compete with the endogenous protein for assembly into phycobilisomes.  相似文献   

16.
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

17.
We investigated the use of the Digital Imaging Spectrophotometer (Youvan et al., 1995) for the primary isolation of photosynthetic mutants in the cyanobacterium Synechocystis sp. PCC 6803. We tested the system with two previously characterized mutants of Synechocystis sp. PCC 6803: the Del-1 mutant, a partial deletion mutant of the psbB gene (Eaton-Rye and Vermaas, 1991), and the psbO mutant, a complete deletion of the psbO gene (Burnap and Sherman, 1991). We found that the considiration of colony sizes vs camera resolution is important for avoiding the isolation of false positive mutants. We modified the instrument by adding a magnifying lens for fluorescence imaging of plates inside the sphere. We proposed three ways in which the DIS can be used to isolate cyanobacterial random mutants: direct fluorescence intensity, fluorescence image ratios, and PC/Chl ratios calculated from absorbance. The reliabilty of each of those methods is excellent for differentiating existing PSII deletion mutants. We also proposed a statistical criterion for selecting significantly different mutants.  相似文献   

18.
Sucrose is one of several low-molecular-weight compounds that cyanobacteria accumulate in response to osmotic stress and which are believed to act as osmoprotectants. The genome of the cyanobacterium Synechocystis sp. PCC 6803 contains a 2163 bp open reading frame (ORF) that shows similarity to genes from higher plants encoding sucrose-phosphate synthase (SPS), the enzyme responsible for sucrose synthesis. The deduced amino acid sequence shows 35–39% identity with known higher-plant SPS sequences. The putative Synechocystis sps gene was cloned from genomic DNA by PCR amplification and expressed as a His6-tagged amino-terminal fusion protein in Escherichia coli. The expressed protein was purified and shown to be a functional SPS enzyme, confirming the identity of the ORF, which is the first sps gene to be cloned from a prokaryotic organism. The Synechocystis SPS has a molecular mass of 81.5 kDa, which is smaller than the typical higher-plant SPS subunit (117–119 kDa), and lacks the phosphorylation site motifs associated with light- and osmotic stress-induced regulation of SPS in higher plants. The enzyme has Km values for UDPG1c and Fru6P of 2.9 mM and 0.22 mM, respectively, with a Vmax of 17 mol per minute per mg protein and a pH optimum of 8.5. Unlike the higher-plant enzyme, ADPG1c, CDPG1c and GDPG1c can substitute for UDPG1c as the glucosyl donor with Km values of 2.5, 7.2 and 1.8 mM, respectively. The enzyme is activated by Mg2+ but not by G1c6P, and is only weakly inhibited by inorganic phosphate. The purified protein was used to raise a high-titre antiserum, which recognises a low-abundance 81 kDa protein in Synechocystis sp. PCC 6803 extracts. There was no apparent increase in expression of the 81 kDa protein when the cells were exposed to moderate salt stress, and SPS activity was very low in extracts from both unstressed and salt- stressed cells. These results and the lack of evidence for sucrose accumulation in Synechocystis sp. PCC6803 lead to the conclusion that expression of the sps gene plays no obvious role in adaptation to osmotic stress in this species.  相似文献   

19.
Szewczyk  S.  Białek  R.  Giera  W.  Burdziński  G.  van Grondelle  R.  Gibasiewicz  K. 《Photosynthesis research》2020,144(2):235-245
Photosynthesis Research - Excitation decay in closed Photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 and dissolved in a buffer solution occurs predominantly with...  相似文献   

20.
Activities of glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucose isomerase, phosphofructokinase (PFK), enolase, pyruvate kinase (PK) and phosphoenolpyruvate (PEP) carboxylase were determined in extracts of photoautotrophic, mixotrophic, and heterotrophic cultures of Synechocystis sp. PCC 6803. Annotated genomes of Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 were analyzed for the respective predicted physical properties of each enzyme investigated here. Enzymatic activity was largely unaffected by nutritional mode, with the exception of glucokinase and PK whose activities were significantly elevated in heterotrophic cultures of Synechocystis sp. PCC 6803. PFK activity was insensitive to bacterial PFK-A (allosteric) effectors such as PEP, implying that Synechocystis PFK should be classified as a PFK-B (non-allosteric). Immunoblot and kinetic studies indicated that irrespective of nutritional mode, the Synechocystis PK corresponds to a PK-A (AMP activated) rather than PK-F (fructose-1,6-bisphosphate activated).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号