首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tran EJ  Zhang X  Maxwell ES 《The EMBO journal》2003,22(15):3930-3940
Box C/D ribonucleoprotein (RNP) complexes direct the nucleotide-specific 2'-O-methylation of ribonucleotide sugars in target RNAs. In vitro assembly of an archaeal box C/D sRNP using recombinant core proteins L7, Nop56/58 and fibrillarin has yielded an RNA:protein enzyme that guides methylation from both the terminal box C/D core and internal C'/D' RNP complexes. Reconstitution of sRNP complexes containing only box C/D or C'/D' motifs has demonstrated that the terminal box C/D RNP is the minimal methylation-competent particle. However, efficient ribonucleotide 2'-O-methylation requires that both the box C/D and C'/D' RNPs function within the full-length sRNA molecule. In contrast to the eukaryotic snoRNP complex, where the core proteins are distributed asymmetrically on the box C/D and C'/D' motifs, all three archaeal core proteins bind both motifs symmetrically. This difference in core protein distribution is a result of altered RNA-binding capabilities of the archaeal and eukaryotic core protein homologs. Thus, evolution of the box C/D nucleotide modification complex has resulted in structurally distinct archaeal and eukaryotic RNP particles.  相似文献   

3.
Archaeal dual-guide box C/D small nucleolar RNA-like RNAs (sRNAs) bind three core proteins in sequential order at both terminal box C/D and internal C'/D' motifs to assemble two ribonuclear protein (RNP) complexes active in guiding nucleotide methylation. Experiments have investigated the process of box C/D sRNP assembly and the resultant changes in sRNA structure or "remodeling" as a consequence of sRNP core protein binding. Hierarchical assembly of the Methanocaldococcus jannaschii sR8 box C/D sRNP is a temperature-dependent process with binding of L7 and Nop56/58 core proteins to the sRNA requiring elevated temperature to facilitate necessary RNA structural dynamics. Circular dichroism (CD) spectroscopy and RNA thermal denaturation revealed an increased order and stability of sRNA folded structure as a result of L7 binding. Subsequent binding of the Nop56/58 and fibrillarin core proteins to the L7-sRNA complex further remodeled sRNA structure. Assessment of sR8 guide region accessibility using complementary RNA oligonucleotide probes revealed significant changes in guide region structure during sRNP assembly. A second dual-guide box C/D sRNA from M. jannaschii, sR6, also exhibited RNA remodeling during temperature-dependent sRNP assembly, although core protein binding was affected by sR6's distinct folded structure. Interestingly, the sR6 sRNP followed an alternative assembly pathway, with both guide regions being continuously exposed during sRNP assembly. Further experiments using sR8 mutants possessing alternative guide regions demonstrated that sRNA folded structure induced by specific guide sequences impacted the sRNP assembly pathway. Nevertheless, assembled sRNPs were active for sRNA-guided methylation independent of the pathway followed. Thus, RNA remodeling appears to be a common and requisite feature of archaeal dual-guide box C/D sRNP assembly and formation of the mature sRNP can follow different assembly pathways in generating catalytically active complexes.  相似文献   

4.
Box C/D RNA-protein complexes (RNPs) guide the 2′-O-methylation of nucleotides in both archaeal and eukaryotic ribosomal RNAs. The archaeal box C/D and C′/D′ RNP subcomplexes are each assembled with three sRNP core proteins. The archaeal Nop56/58 core protein mediates crucial protein-protein interactions required for both sRNP assembly and the methyltransferase reaction by bridging the L7Ae and fibrillarin core proteins. The interaction of Methanocaldococcus jannaschii (Mj) Nop56/58 with the methyltransferase fibrillarin has been investigated using site-directed mutagenesis of specific amino acids in the N-terminal domain of Nop56/58 that interacts with fibrillarin. Extensive mutagenesis revealed an unusually strong Nop56/58-fibrillarin interaction. Only deletion of the NTD itself prevented dimerization with fibrillarin. The extreme stability of the Nop56/58-fibrillarin heterodimer was confirmed in both chemical and thermal denaturation analyses. However, mutations that did not affect Nop56/58 binding to fibrillarin or sRNP assembly nevertheless disrupted sRNP-guided nucleotide modification, revealing a role for Nop56/58 in methyltransferase activity. This conclusion was supported with the cross-linking of Nop56/58 to the target RNA substrate. The Mj Nop56/58 NTD was further characterized by solving its three-dimensional crystal structure to a resolution of 1.7 Å. Despite low primary sequence conservation among the archaeal Nop56/58 homologs, the overall structure of the archaeal NTD domain is very well conserved. In conclusion, the archaeal Nop56/58 NTD exhibits a conserved domain structure whose exceptionally stable interaction with fibrillarin plays a role in both RNP assembly and methyltransferase activity.  相似文献   

5.
Archaeal and eukaryotic box C/D RNPs catalyze the 2'-O-methylation of ribosomal RNA, a modification that is essential for the correct folding and function of the ribosome. Each archaeal RNP contains three core proteins--L7Ae, Nop5, and fibrillarin (methyltransferase)--and a box C/D sRNA. Base-pairing between the sRNA guide region and the rRNA directs target site selection with the C/D and related C'/D' motifs functioning as protein binding sites. Recent structural analysis of in vitro assembled archaeal complexes has produced two divergent models of box C/D sRNP structure. In one model, the complex is proposed to be monomeric, while the other suggests a dimeric sRNP. The position of the RNA in the RNP is significantly different in each model. We have used UV-cross-linking to characterize protein-RNA contacts in the in vitro assembled Pyrococcus furiosus box C/D sRNP. The P. furiosus sRNP components assemble into complexes that are the expected size of di-sRNPs. Analysis of UV-induced protein-RNA cross-links revealed a novel interaction between the ALFR motif, in the Nop domain of Nop5, and the guide/spacer regions of the sRNA. We show that the ALFR motif and the spacer sequence adjacent to box C or C' are important for box C/D sRNP assembly in vitro. These data therefore reveal new RNA-protein contacts in the box C/D sRNP and suggest a role for Nop5 in substrate binding and/or release.  相似文献   

6.
Archaeal box C/D sRNAs guide the 2'-O-methylation of target nucleotides using both terminal box C/D and internal C'/D' RNP complexes. In vitro assembly of a catalytically active Methanocaldococcus jannaschii sR8 box C/D RNP provides a model complex to determine those structural features of the guide:target RNA duplex important for sRNA-guided nucleotide methylation. Watson-Crick pairing of guide and target nucleotides was found to be essential for methylation, and mismatched bases within the guide:target RNA duplex also disrupted nucleotide modification. However, dependence upon Watson-Crick base-paired guide:target nucleotides for methylation was compromised in elevated Mg(2+) concentrations where mismatched target nucleotides were modified. Nucleotide methylation required that the guide:target duplex consist of an RNA:RNA duplex as a target ribonucleotide within a guide RNA:target DNA duplex that was not methylated. Interestingly, D and D' target RNAs exhibited different levels of methylation when deoxynucleotides were inserted into the target RNA or when target methylation was carried out in elevated Mg(2+) concentrations. These observations suggested that unique structural features of the box C/D and C'/D' RNPs differentially affect their respective methylation capabilities. The ability of the sR8 box C/D sRNP to methylate target nucleotides positioned within highly structured RNA hairpins suggested that the sRNP can facilitate unwinding of double-stranded target RNAs. Finally, increasing target RNA length to extend beyond those nucleotides that base pair with the sRNA guide sequence significantly increased sRNP turnover and thus nucleotide methylation. This suggests that target RNA interaction with the sRNP core proteins is also important for box C/D sRNP-guided nucleotide methylation.  相似文献   

7.
Methylation of the ribose 2'-hydroxyl, the most widespread modification of ribosomal and splicesomal RNAs, is guided by the box C/D class of small nucleolar RNAs (snoRNAs). Box C/D small nucleolar ribonucleoproteins (snoRNPs) contain four core proteins: fibrillarin, Nop56, Nop58 and 15.5 kDa. We constructed U25 snoRNAs containing a single photoactivatable 4-thiouridine at each U position within the conserved box C/D and C'/D' motifs. Proteins assembled on the snoRNA after injection into Xenopus oocyte nuclei were identified by cross-linking, and reconstituted particles characterized by functional rescue and mutational analyses. Our data argue that box C/D snoRNPs are asymmetric, with the C' box contacting Nop56 and fibrillarin, the C box interacting with Nop58, and the D and D' boxes contacting fibrillarin. No cross-link to 15.5 kDa was detected; its binding is disrupted by 4-thiouridine substitution in position 1 of the C box. Repositioning the guide sequence of U25 upstream of box D instead of D' revealed that both C/D motifs have the potential to function as guide centers, but, surprisingly, there was no alteration in protein cross-linking.  相似文献   

8.
Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes.  相似文献   

9.
Recent investigations have identified homologs of eukaryotic box C/D small nucleolar RNAs (snoRNAs) in Archaea termed sRNAs. Archaeal homologs of the box C/D snoRNP core proteins fibrillarin and Nop56/58 have also been identified but a homolog for the eukaryotic 15.5kD snoRNP protein has not been described. Our sequence analysis of archaeal genomes reveals that the highly conserved ribosomal protein L7 exhibits extensive homology with the eukaryotic 15.5kD protein. Protein binding studies demonstrate that recombinant Methanoccocus jannaschii L7 protein binds the box C/D snoRNA core motif with the same specificity and affinity as the eukaryotic 15.5kD protein. Identical to the eukaryotic 15.5kD core protein, archaeal L7 requires a correctly folded box C/D core motif and intact boxes C and D. Mutational analysis demonstrates that critical features of the box C/D core motif essential for 15.5kD binding are also required for L7 interaction. These include stem I which juxtaposes boxes C and D, as well as the sheared G:A pairs and protruded pyrimidine nucleotide of the asymmetric bulge region. The demonstrated presence of L7Ae in the Haloarcula marismortui 50S ribosomal subunit, taken with our demonstration of the ability of L7 to bind to the box C/D snoRNA core motif, indicates that this protein serves a dual role in Archaea. L7 functioning as both an sRNP core protein and a ribosomal protein could potentially regulate and coordinate sRNP assembly with ribosome biogenesis.  相似文献   

10.
The genome of the hyperthermophilic archaeon Sulfolobus solfataricus contains dozens of small C/D-box sRNAs that use a complementary guide sequence to target 2'-O-ribose methylation to specific locations within ribosomal and transfer RNAs. The sRNAs are approximately 50-60 nucleotides in length and contain two RNA structural kink-turn (K-turn) motifs that are required for assembly with ribosomal protein L7Ae, Nop5, and fibrillarin to form an active ribonucleoprotein (RNP) particle. The complex catalyzes guide-directed methylation to target RNAs. Earlier work in our laboratory has characterized the assembly pathway and methylation reaction using the model sR1 sRNA from Sulfolobus acidocaldarius. This sRNA contains only one antisense region situated adjacent to the D-box, and methylation is directed to position U52 in 16S rRNA. Here we have investigated through RNA mutagenesis, the relationship between the sR1 structure and methylation-guide function. We show that although full activity of the guide requires intact C/D and C'/D' K-turn motifs, each structure plays a distinct role in the methylation reaction. The C/D motif is directly implicated in the methylation function, whereas the C'/D' element appears to play an indirect structural role by facilitating the correct folding of the RNA. Our results suggest that L7Ae facilitates the folding of the K-turn motifs (chaperone function) and, in addition, is required for methylation activity in the presence of Nop5 and Fib.  相似文献   

11.
Nop56p and Nop58p are two core proteins of the box C/D snoRNPs that interact concurrently with fibrillarin and snoRNAs to function in enzyme assembly and catalysis. Here we report the 2.9 A resolution co-crystal structure of an archaeal homolog of Nop56p/Nop58p, Nop5p, in complex with fibrillarin from Archaeoglobus fulgidus (AF) and the methyl donor S-adenosyl-L-methionine. The N-terminal domain of Nop5p forms a complementary surface to fibrillarin that serves to anchor the catalytic subunit and to stabilize cofactor binding. A coiled coil in Nop5p mediates dimerization of two fibrillarin-Nop5p heterodimers for optimal interactions with bipartite box C/D RNAs. Structural analysis and complementary biochemical data demonstrate that the conserved C-terminal domain of Nop5p harbors RNA-binding sites. A model of box C/D snoRNP assembly is proposed based on the presented structural and biochemical data.  相似文献   

12.
Small nucleolar RNAs play crucial roles in ribosome biogenesis. They guide folding, site-specific nucleotide modifications and participate in cleavage of precursor ribosomal RNAs. To better understand how the biogenesis of the box C/D small nucleolar RNPs (snoRNPs) occur in a cellular context, we used a new approach based on the possibility of relocalizing a given nuclear complex by adding an affinity tag for B23 to one component of this complex. We selectively delocalized each core box C/D protein, namely 15.5kD, Nop56, Nop58 and fibrillarin, and analyzed the effect of such changes on other components of the box C/D snoRNPs. We show that modifying the localization and the mobility of core box C/D proteins impairs their association with box C/D snoRNPs. In addition, we demonstrate that fibrillarin and Nop56 directly interact in vivo. This interaction, indispensable for the association of both proteins with the box C/D snoRNPs, does not involve the glycine- and arginine-rich domain or the RNA-binding domain but the alpha-helix domain of fibrillarin. In addition, no RNA seems required to maintain fibrillarin-Nop56 interaction.  相似文献   

13.
The Nop56/58-fibrillarin heterocomplex is a core protein complex of the box C/D ribonucleoprotein particles that modify and process ribosomal RNAs. The previous crystal structure of the Archaeoglobus fulgidus complex revealed a symmetric dimer of two Nop56/58-fibrillarin complexes linked by the coiled-coil domains of the Nop56/68 proteins. However, because the A. fulgidus Nop56/58 protein lacks some domains found in most other species, it was thought that the bipartite architecture of the heterocomplex was not likely a general phenomenon. Here we report the crystal structure of the Nop56/58-fibrillarin complex bound with methylation cofactor, S-adenosyl-L-methionine from Pyrococcus furiosus, at 2.7 A. The new complex confirms the generality of the previously observed bipartite arrangement. In addition however, the conformation of Nop56/58 in the new structure differs substantially from that in the earlier structure. The distinct conformations of Nop56/58 suggest potential flexibility in Nop56/58. Computational normal mode analysis supports this view. Importantly, fibrillarin is repositioned within the two complexes. We propose that hinge motion within Nop56/58 has important implications for the possibility of simultaneously positioning two catalytic sites at the two target sites of a bipartite box C/D guide RNA.  相似文献   

14.
2'-O-methylation of eukaryotic ribosomal RNA (r)RNA, essential for ribosome function, is catalysed by box C/D small nucleolar (sno)RNPs. The RNA components of these complexes (snoRNAs) contain one or two guide sequences, which, through base-pairing, select the rRNA modification site. Adjacent to the guide sequences are protein-binding sites (the C/D or C'/D' motifs). Analysis of >2000 yeast box C/D snoRNAs identified additional conserved sequences in many snoRNAs that are complementary to regions adjacent to the rRNA methylation site. This 'extra base-pairing' was also found in many human box C/D snoRNAs and can stimulate methylation by up to five-fold. Sequence analysis, combined with RNA-protein crosslinking in Saccharomyces cerevisiae, identified highly divergent box C'/D' motifs that are bound by snoRNP proteins. In vivo rRNA methylation assays showed these to be active. Our data suggest roles for non-catalytic subunits (Nop56 and Nop58) in rRNA binding and support an asymmetric model for box C/D snoRNP organization. The study provides novel insights into the extent of the snoRNA-rRNA interactions required for efficient methylation and the structural organization of the snoRNPs.  相似文献   

15.
Box C/D small ribonucleoprotein particles (sRNPs) are archaeal homologs of small nucleolar ribonucleoprotein particles (snoRNPs) in eukaryotes that are responsible for site specific 2'-O-methylation of ribosomal and transfer RNAs. The function of box C/D sRNPs is characterized by step-wise assembly of three core proteins around a box C/D RNA that include fibrillarin, Nop5p, and L7Ae. The most distinct structural feature in all box C/D RNAs is the presence of two conserved box C/D motifs accompanied by often a single, and sometimes two, antisense elements located immediately upstream of either the D or D' box. Despite this asymmetric distribution of antisense elements, the bipartite feature of the box C/D motifs appears to be in pleasing agreement with a recently reported three-dimensional structure of the core protein complex between fibrillarin and Nop5p. This investigates functional implications of the symmetric features both in box C/D RNAs and in the fibrillarin-Nop5p complex. Site-directed mutagenesis was employed to generate box C/D RNAs lacking one of the two box C/D motifs and a mutant fibrillarin-Nop5p complex deficient in self-association. The ability of the mutated components to assemble and to direct methyl transfer reactions was assessed by gel mobility-shift, analytical ultracentrifugation, and in vitro catalysis studies. The results presented here suggest that, while a box C/D sRNP is capable of asymmetrical assembly, the symmetries in both the box C/D RNA and in the fibrillarin-Nop5p complex are required for efficient catalysis. These findings underscore the importance of functional assembly in methyl transfer reactions.  相似文献   

16.
17.
Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.  相似文献   

18.
Among the large family of C/D methylation guide RNAs, the intron of euryarchaeal pre-tRNA(Trp) represents an outstanding specimen able to guide in cis, instead of in trans, two 2'-O-methylations in the pre-tRNA exons. Remarkably, both sites of methylation involve nucleotides within the bulge-helix-bulge (BHB) splicing motif, while the RNA-guided methylation and pre-tRNA splicing events depend on mutually exclusive RNA folding patterns. Using the three recombinant core proteins of archaeal C/D RNPs, we have analyzed in vitro RNP assembly of the pre-tRNA and tested its site-specific methylation activity. Recognition by L7Ae of hallmark K-turns at the C/D and C'/D' motifs appears as a crucial assembly step required for subsequent binding of a Nop5p-aFib heterodimer at each site. Unexpectedly, however, even without L7Ae but at a higher concentration of Nop5p-aFib, a substantially active RNP complex can still form, possibly reflecting the higher propensity of the cis-acting system to form guide RNA duplex(es) relative to classical trans- acting C/D RNA guides. Moreover, footprinting data of RNPs, consistent with Nop5p interacting with the non-canonical stem of the K-turn, suggest that binding of Nop5p-aFib to the pre-tRNA-L7Ae complex might direct transition from a splicing-competent structure to an RNA conformer displaying the guide RNA duplexes required for site-specific methylation.  相似文献   

19.
Small nucleolar RNAs (snoRNAs) are associated in ribonucleoprotein particles localized to the nucleolus (snoRNPs). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Although the selection of the target nucleotide requires the antisense element and the conserved box D or D' of the snoRNA, the methyltransferase activity is supposed to reside in one of the protein components. Through protein tagging of a snoRNP-specific factor, we purified to homogeneity box C/D snoRNPs from the yeast Saccharomyces cerevisiae. Mass spectrometric analysis demonstrated the presence of Nop1p, Nop58p, Nop56p, and Snu13p as integral components of the particle. We show that purified snoRNPs are able to reproduce the site-specific methylation pattern on target RNA and that the predicted S-adenosyl-L-methionine-binding region of Nop1p is responsible for the catalytic activity.  相似文献   

20.
Box C/D ribonucleoprotein (RNP) particles mediate O2′-methylation of rRNA and other cellular RNA species. In higher eukaryotic taxa, these RNPs are more complex than their archaeal counterparts, containing four core protein components (Snu13p, Nop56p, Nop58p and fibrillarin) compared with three in Archaea. This increase in complexity raises questions about the evolutionary emergence of the eukaryote-specific proteins and structural conservation in these RNPs throughout the eukaryotic domain. In protists, the primarily unicellular organisms comprising the bulk of eukaryotic diversity, the protein composition of box C/D RNPs has not yet been extensively explored. This study describes the complete gene, cDNA and protein sequences of the fibrillarin homolog from the protozoon Euglena gracilis, the first such information to be obtained for a nucleolus-localized protein in this organism. The E.gracilis fibrillarin gene contains a mixture of intron types exhibiting markedly different sizes. In contrast to most other E.gracilis mRNAs characterized to date, the fibrillarin mRNA lacks a spliced leader (SL) sequence. The predicted fibrillarin protein sequence itself is unusual in that it contains a glycine-lysine (GK)-rich domain at its N-terminus rather than the glycine-arginine-rich (GAR) domain found in most other eukaryotic fibrillarins. In an evolutionarily diverse collection of protists that includes E.gracilis, we have also identified putative homologs of the other core protein components of box C/D RNPs, thereby providing evidence that the protein composition seen in the higher eukaryotic complexes was established very early in eukaryotic cell evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号