首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genotypes of mustard (B. juncea) were evaluated for concurrent changes in leaf water potential (Ψ), leaf osmotic potential (π), leaf turgor potential (P) and leaf relative water content (RWC) during moisture stress at reproductive stage of growth. The slope ‘b’ in the regression between Ψ and π varied from 0.43 to 0.97 and was positively correlated with P and RWC. The genotypes with ‘b’ around 0.7 were able to maintain P of about 0.5 MPa at Ψ of − 2.5 MPa and thus such value of ‘b’ seems to provide enough degree of tolerance against drought.  相似文献   

2.
The impact of water stress was analysed in the xero-halophyte Mediterranean shrub Atriplex halimus using two Tunisian populations originating from a sub-humid coastal site (Monastir) or from a semi-arid area (Kairouan). Seedlings were exposed for 10 days to nutrient solution containing either 0 or 15% polyethylene glycol. Water potential (Ψw), osmotic potential (Ψs), osmotic potential at full turgor [Ψs(100)], relative water content (RWC), shoot dry weight (DW) and changes in solute concentrations were quantified every 2 days throughout the stress period and inorganic solutes contents were determined at the end of the treatment. The water deficit induced a decrease in Ψw, Ψs and RWC in both populations, recorded changes being higher in plants of Monastir than those of Kairouan while the shoot dry weight was reduced in a similar extent in stressed plants from both populations. Water deficit induced an increase in proline, glycinebetaine and sugar concentrations. Proline accumulated as early as after the 24-h stress treatment while, glycinebetaine required more than 6 days of stress to accumulate. At the end of the stress period, the plants of Kairouan population accumulated higher amounts of proline than those of Monastir, while an opposite trend was reported for glycinebetaine. Both populations specifically accumulated Na+ in response to drought stress, suggesting that this element could play a physiological role in the stress response of this xero-halophyte species. Presented results suggest that the non-recyclable osmotic solute glycinebetaine does not necessarily preferentially accumulates in population facing permanent water stress and that other strategy than osmotic adjustment might be involved in drought tolerance of A. halimus.  相似文献   

3.
Effects of water stress at different stages of plant growth on leaf relative water content (RWC), osmotic potential (Ψos) and changes in contents of chlorophyll, abscisic acid (ABA), zeatin riboside (t-ZR), ethylene and proline in six cultivars of French bean (Phaseolus vulgaris L.) were studied. Under water stress, Ψos and RWC were highest in cv. Contender and lowest in cvs. IIHR-909 and Sel-2. The increase in contents of ABA and proline was marked in cv. Contender followed by cv. UPF-626. Decrease in t-ZR and chlorophyll contents was prominent in cv. IIHR-909. Ethylene production surged in all the cultivars under 4- and 8-d stress and declined under 12-d stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Potted two-year-old lemon plants (Citrus limon (L.) Burm. fil.) cv. Fino, growing under field conditions were subjected to drought by withholding irrigation for 13 d. After that, plants were re-irrigated and the recovery was studied for 5 d. Control plants were daily irrigated maintaining the soil matric potential at about -30 kPa. Young leaves of control plants presented higher leaf conductance (g1) and lower midday leaf water potential (Ψmd) than mature ones. Young leaves also showed higher leaf water potential at the turgor loss point (Ψtlp) than mature leaves. In both leaf types g1 decreased with increased vapour pressure deficit of the atmosphere. From day 1 of the withholding water, predawn and midday leaf water potentials (Ψpd and Ψmd) decreased, reaching in both cases minimum values of -5.5 MPa, with no significant differences between mature and young leaves. Water stress induced stomatal closure, leaf rolling and partial defoliation. No osmotic adjustment was found in response to water stress in either leaf type, but both were able to enhance the cell wall elasticity (elastic adjustment). After rewatering, leaf water potential recovered quickly (within 2 d) but g1 did not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Fernandez  D.  Castrillo  M. 《Photosynthetica》1999,37(3):493-497
Maize plants of CPB2 and CPB8 hybrids were kept under water deficit for 22 d. In the CPB8 hybrid, leaf rolling initiated at the 9th d of water deficit period, while in CPB2 hybrid it was at the 15th d. Both hybrids showed leaf rolling initiation at the same leaf water potential, ΨW of -0.480±0.095 MPa. At leaf rolling initiation, the leaf osmotic potential, ΨS was -0.730±0.085 MPa in CPB8 and 0.630±0.110 MPa in CPB2. The leaf temperature and stomatal conductance were higher in CPB8 than in CPB2. Values of leaf ΨW, ribulose-1,5-bisphosphate carboxylase activity, chlorophyll content, and specific leaf area were similar in both hybrids. Phosphoenolpyruvate carboxylase activity and protein content were lower in the CPB2 hybrid than in CPB8. In both hybrids leaf rolling initiation was associated with: (1) higher leaf temperature, with leaf rolling effect related to leaf temperature reduction, and (2) lower leaf ΨS, related to osmotic adjustment as an additional component of drought-tolerance strategy. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Two-year-old olive trees (Olea europaea L., cv. Coratina) were subjected to a 15-day period of water deficit, followed by 12 days of rewatering. Water deficit caused decreases in predawn leaf water potential (Ψw), relative water content and osmotic potential at full turgor (Ψ π100) of leaves and roots, which were normally restored upon the subsequent rewatering. Extracts of leaves and roots of well-watered olive plants revealed that the most predominant sugars are mannitol and glucose, which account for more than 80% of non-structural carbohydrates and polyols. A marked increase in mannitol content occurred in tissues of water-stressed plants. During water deficit, the levels of glucose, sucrose and stachyose decreased in thin roots (with a diameter <1 mm), whereas medium roots (diameter of 1–5 mm) exhibited no differences. Inorganic cations largely contribute to Ψ π100 and remained stable during the period of water deficit, except for the level of Ca2+, which increased of 25% in water-stressed plants. The amount of malate increased in both leaves and roots during the dry period, whereas citrate and oxalate decreased. Thin roots seem to be more sensitive to water deficit and its consequent effects, while medium roots present more reactivity and a higher osmotic adjustment. The results support the hypothesis that the observed decreases in Ψw and active osmotic adjustment in leaves and roots of water-stressed olive plants may be physiological responses to tolerate water deficit.  相似文献   

7.
The responses of water relations, stomatal conductance (gs) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the water evapotranspirated by the plant the preceding day. Well-watered plants received 100 % of the water evapotranspirated. Two weeks before starting the drought period, the plants were fertilised with Hoagland’s solution with 14, 60 and 110 mM NO3 (N14, N60 and N110, respectively). Plants of the N110 treatment had the highest leaf area. However, gs was higher for N60 plants and lower for N110 plants. At the end of the drought period, N60 plants showed the lowest values of water potential (Ψw) and osmotic potential (Ψs), and the highest values of pressure potential (Ψp). N60 plants showed the highest Ψs at maximum Ψp and the highest bulk modulus of elasticity.  相似文献   

8.
The aim of this work was to examine the ability of ABA and proline to counteract the deleterious effect of water deficit stress on cell membrane injuries. Six-day-old seedlings of two barley genotypes (cv. Aramir, line R567) were treated with ABA (2·10−4 M) or proline (0.1 M) for 24 h, and then subjected to osmotic stress for 24h, by immersing their roots in polyethylene glycol (PEG 6000) solution of osmotic potential of −1.0 MPa and −1.5 MPa or by submerging the leaf pieces in PEG solution of osmotic potential of −1.6 MPa. Pretreatment of plants with ABA and proline caused an increase of free proline level in the leaves. Plants treated with ABA exhibited a lower membrane injury index under water stress conditions than those untreated even when no effect of this hormone on RWC in the leaves of stressed plants was observed. Pretreatment of plants with proline prevented to some extent membrane damage in leaves of the stressed seedlings, but only in the case when stress was imposed to roots. Improvement in water status of leaves was also observed in seedlings pretreatment with proline. The protective effect of both ABA and proline was more pronounced in line R567 that exhibited higher membrane injury under water deficit stress conditions.  相似文献   

9.
Susceptibility of alfalfa ( Medicago saliva L. cv. Aragón) nodules and leaves to water stress has been investigated. Nodule acetylene reduction activity (ARA), leaf CO2 exchange rate (CER) as well as soluble protein, proline and total soluble sugar (TSS) contents were determined during drought. Water status was estimated as water potential (Ψw) and Relative water content (RWC) of the respective tissues. Maximum rates of ARA required higher Ψw than CER. Nodules had lower RWC for a given Ψw than leaves. Water stress reduced soluble protein content in both tissues; however, the decline in soluble protein content was detected at greater Ψw in nodules than in leaves. Proline and TSS increased in leaves and nodules, and again the threshold Ψw triggering such accumulation was higher in nodule tissues. Oior results suggest that alfalfa nodules are more susceptible to water shortage than leaves. Effects of accumulated TSS and proline upon leaf and nodule physiology are discussed in relation to protein stability (proline), pH control (proline) and osmotic adjustment (proiine and TSS). The TSS accumulation induced by water stress suggests that substrate shortage would not be the primary effect of drought on nodule activity.  相似文献   

10.
Responses of Quercus ilex L. seedlings from three different localities in Italy to experimentally imposed drought stress were analysed. Predawn (Ψpd) and midday (Ψm) leaf water potential of stressed seedlings decreased on an average until −4.0 and −4.2 MPa, respectively, in the severe water stress. At the end of the severe water stress the relative water content (RWC) was 72.5 – 83.6 % and the photosynthetic rates (PN) near zero. The critical threshold value of Ψpd for complete stomatal closure was from −4.0 to −4.5 MPa. The leaf damage after the severe water stress was significantly greater in seedlings originated from the acorns of climax area (45 % total leaf injured area and 40 % fallen leaves) than in the other seedlings (on an average 20.5 % total leaf injured area and 21 % fallen leaves). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The purpose of this research was to examine whether proline accumulation in leaves of barley under conditions of mild water deficit (PEG — 0.75 MPa imposed on roots) may modify membrane injuries caused by subsequent severe osmotic stress (PEG — 1.6 MPa imposed on leaves). Six-day-old seedlings of four barley genotypes were used in the experiments. Substantial and different proline accumulation was found in the leaves of mild water deficit-stressed plants of the most investigated genotypes. This stress factor caused rather a small decrease in RWC and did not lead to membrane injuries. Severe osmotic stress imposed on leaves caused considerable membrane injuries in all the genotypes investigated. Leaves of plants pre-stressed with mild water deficit and then subjected to severe osmotic stress exhibited about a 50% lower membrane injury than those of not pre-stressed plants. A possible role of proline accumulated in the leaves of pre-stressed plants in the process of alleviating cell membrane injuries in the leaves subsequently exposed to severe water deficit is discussed.  相似文献   

12.
Lucero  D. W.  Grieu  P.  Guckert  A. 《Plant and Soil》2000,227(1-2):1-15
The combined effects of soil water deficit and above and below ground interspecific plant competition on the growth, water-use efficiency (WUE), and measured carbon isotopic composition (δ13C) values of white clover and ryegrass were studied. White clover and ryegrass were grown in specially designed crates 1) individually; 2) in shoot competition; or 3) in shoot + root competition and either well-watered or at a moderate or severe soil water deficit. The effects of shoot + root competition on shoot dry matter growth were substantial and benefited both white clover and ryegrass when well-watered or at a moderate soil water deficit, while severely reducing white clover shoot dry matter growth at severe soil water deficit. Plant competition did not affect the WUE of white clover or ryegrass. As soil water deficit increased, the WUE of white clover did not change whereas the WUE of ryegrass increased and was greater than that of white clover. This was attributed to the lower leaf water conductance of ryegrass which conserved water and maintained growth longer compared to white clover. A stronger correlation existed between soil water deficit and measured δ13C values for ryegrass at each plant competition level (P<0.001) than existed for white clover (individual: P<0.01; shoot + root: P<0.001; shoot: P<0.10). Unlike white clover, the relationship between measured δ13C values and shoot dry matter growth indicated that C assimilation for ryegrass was dependent on type of plant competition. That WUE remained constant for white clover while measured δ13C values increased as soil water deficit increased, suggests that the role below ground respiration rate played in determining δ13C values increased. The WUE of white clover appears to be independent of the nature of the competition between plants and the soil water deficit level at which it is grown, whereas for ryegrass, the addition of root competition to shoot competition should lead to increases in its WUE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
We studied the water relations of 6 shrub and 3 tree species typical of the mediterranean climate region of central Spain to identify differential responses to water stress between and within species, and to determine if free proline concentration in leaves could be used as a water stress indicator. Predawn and midday water potentials (w) on a seasonal basis, relative water content (RWC), leaf mass per area, foliar nitrogen and free proline concentrations were measured. The lowest water potentials were observed at the end of the summer, with recovery to higher water potentials in the fall and winter seasons. Species differed regarding the annual w fluctuation. Thymus zygis, Halimium viscosum, Genista hirsuta and Juniperus oxycedrus exhibited the most negative midday and predawn w (both less than -6 MPa) with a large magnitude of response to changing conditions in soil moisture of the upper horizon of the soil. Lavandula pedunculata and Cistus ladanifer showed a moderate response. Quercus rotundifolia, Quercus faginea and Retama sphaerocarpa showed a modest response. The w of different size individuals of Quercus rotundifolia and Cistus ladanifer were compared. The annual w fluctuation was greater in small individuals as compared to large individuals. In every species, there was an increase in proline concentration of bulk leaf tissues when predawn w dropped below -5 MPa. Small plants of Cistus ladanifer reached lower water potentials and also higher concentration of proline than bigger plants. Proline could possibly be used as a drought stress indicator in every species except Q. rotundifolia. It is suggested that in addition to water stress avoidance due to deep root systems, some mechanisms of water stress tolerance may operate among shrub and tree species of central Spain.  相似文献   

14.
Rehmannia glutinosa seedlings were pretreated with choline chloride (CC) in concentrations of 0, 0.7, 2.1 and 3.5 mM, and then subjected to drought and rewatering treatment to study the effects of CC on the generation of reactive oxygen species (O2, H2O2), lipid peroxidation, proline accumulation, water status and photosynthesis. The results showed that pretreatment with CC alleviated the inhibition of SOD and APX activity caused by drought stress, and therefore, the rate of O2 production and H2O2 concentration were reduced and lipid peroxidation decreased in pretreated plants. CC pretreatment also accelerated accumulation of proline, maintained higher Ψw and RWC, deferred leaf water loss during drought stress and retarded the drop in proline concentration after rewatering. Consequently, drought-induced decreases in Fm/F0, Fv/Fm, ΦPS2, qP, and A and increase in qNP were inhibited and the recovery of photosynthesis after rewatering was quicker in pretreated plants. Although differences in Fv/Fm, ΦPS2 and qP between treatments were not significant, there was a general trend that the effects of CC increased with the rise of its concentrations. The data suggested that 2.1 mM of CC be suitable for alleviating lipid peroxidation, promoting proline accumulation, retarding leaf water loss and improving photosynthesis of R. glutinosa seedlings under drought stress.  相似文献   

15.
Leaf water characteristics and drought acclimation in sunflower genotypes   总被引:1,自引:0,他引:1  
Maury  P.  Berger  M.  Mojayad  F.  Planchon  C. 《Plant and Soil》2000,223(1-2):155-162
The responses of leaf water parameters to drought were examined using three sunflower (Helianthus annuus L.) genotypes. Osmotic potential at full water saturation (π100), apoplastic water fraction (AWF) and bulk elastic modulus (BEM) were determined by pressure-volume curve analysis on well watered or on water-stressed plants (−1.0 MPa Ψ1 < −1.5 MPa) previously drought-pretreated or not. The drought-pretreated plants were subjected to a 7-day drought period (predawn leaf water potential reached −0.9 MPa) followed by 8 days of rewatering. In well watered plants, all genotypes in response to drought acclimation displayed a significantly decreased π100 associated with a decrease in the leaf water potential at the turgor-loss point (decrease in Ψtlp was between 0.15 and 0.21 MPa, depending on the genotype). In two genotypes, drought acclimation affected the partitioning of water between the apoplastic and symplastic fractions without any effect on the total amount of water in the leaves. As a third genotype displayed no modification of AWF and BEM after drought acclimation, the decreased π100 was only due to the net accumulation of solutes and was consistent with the adjustment of the photochemical efficiency observed previously in this genotype in response to drought acclimation. In water-stressed plants, the osmotic adjustment (OA) can increase further beyond that observed in response to the drought pretreatment. However, the maintenance of photosynthetic rate and stomatal conductance at low leaf water potentials not only depends on the extent of osmotic adjustment, but also on the interaction between OA and AWF or BEM. Adaptative responses of leaf water parameters to drought are thus quite contrasted in sunflower genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Osmotic adjustment (OA) and increased cell-wall extensibility required for expansive leaf growth are well defined components of adaptation to water stress in dry soil, which might interact with soil phosphorus (P) concentration and defoliation frequency for intensively grazed white clover in legume-based pastures. Experiments were conducted with frequently and infrequently defoliated mini-swards of white clover growing in dry soil with low and high P concentrations. The higher yielding high-P plants were able to dry the soil to greater soil water suctions; their leaves had lower water potential values, yet they showed fewer water stress symptoms and underwent a more complete recovery from the water stress symptoms on rewatering, than the low-P plants. High- P plants had greater OA, proline concentration and leaf expansion rate. On the other hand, low-P plants showed an increased osmotic concentration when there was no change in the total solute content per unit of leaf d. wt, indicating more loss of water from the leaf tissue. The key measures that appeared to be directly associated with plant recovery over a short period following water stress were increased proline concentration and leaf expansion rate, probably resulting from increased cell-wall extensibility rather than increased production of cells for the high-P plants.  相似文献   

17.
Arne Sellin 《Plant and Soil》1996,184(2):273-280
Variation in base water potential (Ψb, a daily maximum level of plant water potential, which is presumed to correspond to the condition of equilibrium between the soil and plant water potentials) was examined in shoots of Norway spruce trees growing in well-drained and waterlogged soils. The influence of soil water content, air temperature, and vapour pressure deficit of the atmosphere on Ψb was studied using the pressure chamber technique. Maximum daily water potentials were not always observable before dawn; some were registered up to two hours later. This tendency being characteristic of trees growing under stress (shade, waterlogging) conditions, increased with declining soil water availability. In trees growing in well-drained soil, Ψb depended asymptotically on the available soil water storage (R2=0.73), while the values were slightly influenced by vapour pressure deficit of the atmosphere as well. In trees growing in waterlogged soil, Ψb was independent of the soil water storage, but sensitive to the vapour pressure deficit.  相似文献   

18.
Three species of fast growing fuel wood yielding plants locally available (Acacia holosericea, Bauhinia variegata and Cassia siamea) were characterized in respect of their responses to water stress. Seedlings (25 days) of these species, exposed to two levels of water stress (−0.5 and −1.0 MPa) induced by PEG-6000 for 24 h, were analysed for relative water content (RWC) and the contents of chlorophyll, protein, soluble sugars and proline in leaves along with activities of catalase, peroxidase and superoxide dismutase (SOD). RWC was lower in stressed compared to the unstressed seedlings. However, stress-induced decline in RWC was lowest in B. variegata. Chlorophyll and protein contents declined with increasing levels of water stress, decline being least in B. variegata. Soluble sugar and proline contents increased under water stress particularly in B. variegata. The enzyme activity of catalase (EC-1.11.1.6), peroxidase (EC-1.11.1.7) and SOD (EC-1.15.1.1) decreased with increased levels of water stress. Such decline in the activity of these enzymes was least in B. variegata. Apparently, B. variegata is potentially the species most tolerant to water stress among these three fuel wood-yielding plants.  相似文献   

19.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

20.
The effect of water stress was investigated in plants from two populations of Atriplex halimus L: Tensift issued from a salt-affected coastal area and Kairouan, originating from an inland dried site. Water deficit was applied by withholding water for 22 days. Shoot dry weight (shoot DW), leaf relative water content (RWC), turgid weight to dry weight ratio (TW/DW), osmotic potential (psis), osmotic adjustment (OA), proline, glycinebetaine, and sugar content were determined 1, 8, 15 and 22 days after withholding watering. Water stress induced a decrease in shoot DW, RWC, psis, and TW/DW, but an increase in glycinebetaine and sugar leaf contents. The decrease of psis and TW/DW was more marked in Kairouan than in Tensift. At the end of the stress period, Kairouan showed a greater OA compared with Tensift. However, the contribution of net solute accumulation (OAacc) was similar in both populations in response to stress. Water stress resistance could thus not be associated with higher OA, although the ability of plants to regulate these metabolic and physiological functions could play an important role under harmful conditions. The possible roles of osmolyte accumulations are discussed in relation to the specific physiological strategy of water-stress-resistance in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号