首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
目的:检测复合应激大鼠模型阴茎组织中降钙素基因相关肽(CGRP)、血管活性肠肽(VIP)的表达,并观察伊木萨克片对二者表达的影响。方法:选用56只正常雄性SD大鼠,其中10只为正常对照组(N),余46只为造模组,采用富含环境雌激素饲料+寒冷环境的干预条件建立复合性应激大鼠模型(20 w),并随机将其分为模型组(B1)、自然恢复组(B2)和伊木萨克干预组(B3),药物干预2 w后,免疫组化及Western blot方法检测大鼠阴茎组织中CGRP、VIP的表达。结果:①大鼠阴茎组织中CGRP表达:B1、B2组较N组明显减少(P0.05);B3组较B1、B2组明显增多(P0.05)。②大鼠阴茎组织中VIP表达:B1、B2组较N组显著降低(P0.05);B3组较B1、B2组显著升高(P0.05)。结论:复合应激大鼠模型阴茎组织中CGRP、VIP明显减少,伊木萨克片干预可抑制此变化。  相似文献   

2.
The effects of vasoactive intestinal peptide (VIP) and several other peptides have been examined on cyclic AMP accumulation in intact pieces and isolated horizontal cells of the teleost (carp) retina. VIP was the most effective peptide examined, inducing a dose-related response, and an approximately fivefold increase in cyclic AMP production when used at a concentration of 10 microM. Porcine histidine isoleucine-containing peptide and secretin, peptides structurally related to VIP, also stimulated cyclic AMP accumulation, but at concentrations of 10 microM induced responses which were only approximately 40% and 10%, respectively, of the response observed with 10 microM VIP. In contrast, several other peptides, including glucagon, neurotensin, somatostatin, luteinizing hormone-releasing hormone, alpha-melanocyte-stimulating hormone, cholecystokinin octapeptide26-33, gastrin-releasing peptide, thyrotropin-releasing hormone, and VIP10-28 were totally inactive. The response to 10 microM VIP was not antagonized by several dopamine antagonists, indicating the presence of a population of specific VIP receptors coupled to adenylate cyclase, distinct from the population of dopamine receptors coupled to adenylate cyclase also known to be present in this tissue. Finally, experiments involving the use of fractions of isolated horizontal cells indicate that these neurons possess a population of VIP receptors coupled to cyclic AMP production which would appear to share a common pool of adenylate cyclase with a population of similarly coupled dopamine receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mouse neuroblastoma cell line N18TG2 synthesizes and secretes a VIP-like immunoreactive material. The majority of this VIP-like material from both cell and media extracts elutes on HPLC in the same position as porcine or rat VIP. Several additional peaks which appear in the media extracts may represent variant forms or degradation products of VIP. The synthesis and release of VIP was significantly enhanced by agents which elevate cAMP levels directly (dbcAMP and forskolin) or through a receptor mediated process (secretin). These agents are also known to promote differentiation of these cells. The synthesis and release of VIP was also enhanced by ascorbate (thought to be a co-factor for the enzyme which amidates the carboxyl-terminal of VIP) [11]. In the presence of forskolin, ascorbate had a synergistic effect on the release of VIP, suggesting that forskolin and ascorbate are elevating VIP levels by different mechanisms; forskolin through a possible effect on VIP mRNA synthesis or translation, and ascorbate by increasing the rate of VIP processing. These results suggest that VIP synthesis and release is controlled by more than one process, whose rate can be altered with pharmacological agents.  相似文献   

4.
Vasoactive intestinal peptide (VIP) and, to a lesser extent, glucagon were found to increase intracellular cyclic AMP rapidly in cultured glial (Müller) cells of the chick embryo retina. Although VIP elicited higher cyclic AMP accumulation than glucagon at each concentration tested, the half-maximal concentrations were similar, i.e., 6 X 10(-8) M for VIP and 8 X 10(-8) M for glucagon. Secretin had a minimal effect on cyclic AMP accumulation even at a very high (5 X 10(-6) M) concentration. Several other peptide and nonpeptide putative agonists also had little effect on cyclic AMP accumulation. The cultured Müller cell may thus be a useful model for examining VIP and glucagon effects on glial elements of the CNS.  相似文献   

5.
Although 3,4-dihydroxyphenylethylamine (dopamine, DA) and vasoactive intestinal peptide (VIP) have been reported to stimulate adenylate cyclase activity in the rabbit retina, possible interactions between VIP-sensitive and DA-sensitive adenylate cyclase systems have not been previously investigated. To elucidate the interactions between these two putative transmitter-stimulated cyclase systems, the effects of VIP, DA, and VIP + DA on the conversion of [alpha-32P]ATP to [32P]cyclic AMP in rabbit retinal homogenates were measured. VIP stimulated adenylate cyclase activity in a biphasic manner, suggesting that two classes of VIP receptors may be involved in the induction of cyclic AMP formation. DA was less potent than VIP, and stimulated cyclase activity with a monophasic dose-response curve. When assayed together, these stimulations were partially nonadditive, implying the existence of a common adenylate cyclase pool that may be stimulated by both putative neurotransmitters. The dopaminergic antagonist (+)-butaclamol completely blocked dopaminergic stimulation, but had no significant effect on VIP-induced stimulation, indicating that VIP interacts with specific VIP receptor sites, which are distinct from the dopaminergic receptor sites. Furthermore, the specific D-2 dopaminergic receptor agonist LY141865 demonstrated no inhibitory effect on adenylate cyclase activity, suggesting that the interaction between the VIP- and DA-sensitive adenylate cyclase systems does not result from a D-2 receptor-mediated cyclase inhibition in the rabbit retina. Finally, at maximally effective concentrations, DA and VIP were less potent than fluoride or forskolin in the stimulation of cyclic AMP formation, suggesting that adenylate cyclase pools that are not sensitive to DA and VIP may also be present in this retina.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Abstract: In this study, the effects of three related peptides, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, and vasoactive intestinal peptide (VIP), on cyclic AMP (cAMP) accumulation and intracellular Ca2+ concentration ([Ca2+]i) were compared in N1E-115 cells. PACAP38 and PACAP27 stimulated cAMP accumulation up to 60-fold with EC50 values of 0.54 and 0.067 n M , respectively. The effect of VIP on cAMP accumulation was less potent. The binding of 125I-PACAP27 to intact cells was inhibited by PACAP38 and PACAP27 (IC50 values of 0.44 and 0.55 n M , respectively) but not by VIP. In fura-2-loaded cells, both PACAP38 and PACAP27 increased [Ca2+]i with EC50 values around 10 n M . The interactions of these three peptides with ionomycin, a Ca2+ ionophore, and 4β-phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were also determined. Ionomycin increased the cAMP accumulation caused by all three peptides. With low concentrations of PACAP38 or PACAP27, the effect of PMA was inhibitory, whereas at higher concentrations of PACAP (>1 n M ), the effect of PMA was stimulatory. Similar to other agents that elevate cAMP, PACAP38 was an effective stimulator of neurite outgrowth. These results show that (a) PACAP27 and PACAP38 stimulate cAMP accumulation and increase [Ca2+]i through the type I PACAP receptors in N1E-115 cells, (b) ionomycin enhances cAMP accumulation by all three peptides, and (c) activation of protein kinase C has a dose-dependent stimulatory or inhibitory effect on the PACAP38- or PACAP27-stimulated cAMP accumulation.  相似文献   

8.
In slices obtained from the ventral and the dorsal guinea pig spinal cord both forskolin and vasoactive intestinal peptide (VIP) caused a dose-dependent stimulation of the production of cyclic AMP. By contrast capsaicin stimulated cyclic AMP formation only in the dorsal cord; no effect was observed in the ventral cord. The alpha 2-adrenergic agonist UK-14,304 dose-dependently inhibited the production of cyclic AMP in both the dorsal and ventral aspects of the cord when the formation of cyclic AMP had been stimulated with 3 microM forskolin, the maximal inhibition amounting to 25-32%. Also the basal (i.e., unstimulated) production of cyclic AMP was inhibited, the inhibition amounting to about 16-18%. However, after stimulation of cyclic AMP formation in the dorsal cord with capsaicin, UK-14,304 was virtually ineffective in inhibiting the accumulation of cyclic AMP. Also, when the formation of cyclic AMP was stimulated with VIP, UK-14,304 was virtually ineffective in inhibiting the formation of cyclic AMP both in the ventral and the dorsal parts of the cord. When cyclic AMP production had been stimulated with forskolin the ability of UK-14,304 to inhibit the formation of cyclic AMP was not attenuated by capsaicin, either in the ventral or in the dorsal cord. The results are discussed with the notion that cyclic AMP inhibitory spinal cord alpha 2-adrenoceptors are located on cells accessible to stimulation of cyclic AMP with forskolin but not with capsaicin or VIP.  相似文献   

9.
In mouse cerebral cortical slices, noradrenaline (NA) potentiates cyclic AMP (cAMP) accumulation elicited by vasoactive intestinal peptide (VIP) through alpha 1-adrenergic receptors. This synergism is inhibited by indomethacin, and the prostaglandins E2 and F2 alpha mimic the effect of NA. In the present study, we observed that the synergism between VIP and NA is not inhibited by the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) or the diacylglycerol-lipase inhibitor RHC 80267, thus further stressing the role of phospholipase A2 activation. Various neuroactive agents that potentiate the stimulatory effect of VIP on cAMP formation were also examined. As with NA, the potentiation by histamine and adenosine is inhibited by indomethacin. In contrast to NA, histamine, and adenosine, the synergistic interaction between phorbol esters and VIP on cAMP formation is abolished by H-7 but not by indomethacin. The potentiation by baclofen, a gamma-aminobutyric acidB receptor agonist, is partially inhibited by the 5-lipoxygenase inhibitor nafazatrom. The synergism between ouabain and VIP is reduced by H-7 but not by indomethacin and nafazatrom. These data indicate that the stimulation of cAMP formation elicited by VIP is under the modulation of various neuroactive agents that trigger diverse intracellular mechanisms to potentiate the effect of the peptide.  相似文献   

10.
To study the biosynthetic processing of the precursor for vasoactive intestinal peptide (prepro-VIP) in the human brain, we have developed antisera against the five functional domains of the precursor molecule: prepro-VIP 22-79, peptide histidine methionine (PHM), prepro-VIP 111-122, VIP, and prepro-VIP 156-170. The antisera were used in radioimmunoassays in combination with HPLC to identify and quantify the peptides in regions of the human brain. All five peptides were expressed, but mainly in nonequimolar ratios. In only three regions were the same amounts of VIP and PHM found; in the remaining areas the concentration of PHM was two-thirds that of VIP. The concentrations of prepro-VIP 22-79, prepro-VIP 111-122, and prepro-VIP 156-170 were considerably lower than the corresponding VIP concentrations, and the relative concentration of prepro-VIP 111-122 differed between cortical and subcortical areas. A small proportion of the VIP precursor followed a pathway in which the dibasic conversion site after PHM is not cleaved, as evidenced by the presence of a C-terminally extended form of PHM. Finally, it was found that the C-terminal lysine residue of prepro-VIP is not removed during processing. The findings indicate that differences in the posttranslational processing of prepro-VIP exist in subpopulations of neurons in the human brain.  相似文献   

11.
In the rat pineal gland, alpha 1-adrenergic agonists, which stimulate arachidonic acid release, also potentiate vasoactive intestinal peptide (VIP)- or beta-adrenergic-stimulated cyclic AMP (cAMP) and cyclic GMP (cGMP) accumulation. In this study, the possible involvement of the arachidonic acid pathway in the potentiation mechanism was examined in dispersed rat pinealocytes using two inhibitors of the arachidonic acid cascade, indomethacin and nordihydroguaiaretic acid. These two inhibitors appeared to have differential effects on the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP responses. Whereas nordihydroguaiaretic acid was effective in suppressing both the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP responses, indomethacin inhibited selectively the VIP-mediated cAMP and cGMP responses. The role of arachidonic acid metabolites was further determined using several prostaglandins--A2, I2, E2, and F2 alpha--and leukotrienes--B4, C4, and D4. Of the seven compounds tested, prostaglandins E2 and F2 alpha stimulated basal cAMP but not cGMP accumulation. The prostaglandin E2- and F2 alpha-stimulated cAMP responses were additive to those stimulated by VIP or beta-adrenergic receptors. The other five compounds had no effects on basal or VIP- or beta-adrenergic-stimulated cAMP or cGMP accumulation. Taken together, these findings indicate that the arachidonic acid cascade is likely involved in the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP accumulation. However, the specific arachidonic acid metabolite involved in the potentiation mechanisms of VIP- versus beta-adrenergic-stimulated cyclic nucleotide responses may be different.  相似文献   

12.
Abstract: We have previously reported that arachidonic acid (AA) increases the long-term secretion of [Met5]-enkephalin (ME) and the expression of proenkephalin A (proENK) mRNA in bovine adrenal medullary chromaffin (BAMC) cells. To characterize the underlying signal transductional mechanisms for the AA-induced responses, the interactions of AA with several second messenger systems were studied. Long-term (24-h) treatment with AA (100 µ M ) increased both the secretion of ME and the expression of proENK mRNA. Pretreatment of BAMC cells with nimodipine (1 µ M ), but not with ω-conotoxin GVIA (1 µ M ), inhibited the secretion of ME and the expression of proENK mRNA induced by AA. Calmidazolium (1 µ M ), a calmodulin antagonist, also significantly inhibited AA-induced responses. However, a protein kinase C (PKC) inhibitor, sphingosine (36 µ M ), was ineffective in blocking AA-induced responses. In addition, the down-regulation of PKC by phorbol 12-myristate 13-acetate (0.1 µ M ) for 48 h did not inhibit the AA-induced responses. Forskolin (5 µ M ), an adenyl cyclase activator, alone increased the secretion of ME as well as proENK mRNA levels and, when coincubated with AA, showed an additive effect on the secretion of ME and the levels of proENK mRNA. The results suggest that the Ca2+/calmodulin pathway, but not the protein kinase A or PKC pathway, is partially involved in mediating the AA-induced increases of the long-term secretion of ME and the levels of proENK mRNA.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号