首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K m values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD+, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values.  相似文献   

2.
A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg?1. The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min?1 mg?1, respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous–organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3 % and e.e. of 99 % was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP+ to (S)-CHBE were 26.5 mmol L?1 h?1 g?1 DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.  相似文献   

3.
Ginsenoside Rb2 was transformed by recombinant glycosidase (Bgp2) into ginsenosides Rd and 20(S)-Rg3. The bgp2 gene consists of 2,430 bp that encode 809 amino acids, and this gene has homology to the glycosyl hydrolase family 2 protein domain. SDS-PAGE was used to determine that the molecular mass of purified Bgp2 was 87 kDa. Using 0.1 mg ml?1 of enzyme in 20 mM sodium phosphate buffer at 40 °C and pH 7.0, 1.0 mg ml?1 ginsenoside Rb2 was transformed into 0.47 mg ml?1 ginsenoside 20(S)-Rg3 within 120 min, with a corresponding molar conversion yield of 65 %. Bgp2 hydrolyzed the ginsenoside Rb2 along the following pathway: Rb2 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb2 to ginsenoside 20(S)-Rg3 using the recombinant glycosidase.  相似文献   

4.
Two native epoxide hydrolases (EHs) were previously discovered from mung bean powder (Vigna radiata), both of which can catalyze the enantioconvergent hydrolysis of p-nitrostyrene oxide (pNSO). In this study, the encoding gene of VrEH1 was successfully cloned from the cDNA of V. radiata by RT-PCR and rapid amplification of cDNA ends (RACE) technologies. High homologies were found to two putative EHs originated from Glycine max (80 %) and Medicago truncatula (79 %). The vreh1 gene constructed in pET28a(+) vector was then heterologously overexpressed in Escherichia coli BL21(DE3), and the encoded protein was purified to homogeneity by nickel affinity chromatography. It was shown that VrEH1 has an optimum activity at 45 °C and is very thermostable with an inactivation energy of 468 kJ mol-1. The enzyme has no apparent requirement of metal ions for activity, and its activity was strongly inhibited by 1 mM of Ni2+, Cu2+, Fe2+, or Co2+. By adding 0.1 % Triton X-100, the enzyme activity could be significantly increased up to 340 %. VrEH1 shows an unusual ability of enantioconvergent catalysis for the hydrolysis of racemic pNSO, affording (R)-p-nitrophenyl glycol (pNPG). It displays opposite regioselectivity toward (S)-pNSO (83 % to Cα) in contrast to (R)-pNSO (87 % to Cβ). The K M and k cat of VrEH1 were determined to be 1.4 mM and 0.42 s-1 for (R)-pNSO and 5.5 mM and 6.2 s-1 for (S)-pNSO. This thermostable recombinant VrEH1 with enantioconvergency is considered to be a promising biocatalyst for the highly productive preparation of enantiopure vicinal diols and also a good model for understanding the mechanism of EH stereoselectivity.  相似文献   

5.
Two novel parasporin (PS) genes were cloned from Bacillus thuringiensis B0462 strain. One was 100 % identical even in nucleotide sequence level with that of parasporin-1Aa (PS1Aa1) from B. thuringiensis A1190 strain. The other (PS1Ac2) showed significant homology (99 % identity) to that of PS1Ac1 from B. thuringiensis 87-29 strain. The 15 kDa (S113–R250) and 60 kDa (I251–S777) fragments consisting of an active form of PS1Ac2 were expressed as His-tag fusion. Upon purification under denaturing condition and refolding, the recombinant polypeptides were applied to cancer cells to analyze their cytotoxicities. 3-(4,5-Dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide assay revealed that either of 15 or 60 kDa polypeptide exhibited no cytotoxicity to HeLa cells, but they became cytotoxic upon mixed together. Our results suggested that PS1Ac2 was responsible for the cytotoxicity of B. thuringiensis B0462 strain, and that the formation of hetero-dimer of 15 and 60 kDa polypeptide was required for their cytotoxicity.  相似文献   

6.
A NADPH-dependent (S)-imine reductase (SIR) was purified to be homogeneous from the cell-free extract of Streptomyces sp. GF3546. SIR appeared to be a homodimer protein with subunits of 30.5 kDa based on SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It also catalyzed the (S)-enantioselective reduction of not only 2-methyl-1-pyrroline (2-MPN) but also 1-methyl-3,4-dihydroisoquinoline and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline. Specific activities for their imines were 130, 44, and 2.6 nmol?min?1?mg?1, and their optical purities were 92.7 % ee, 96.4 % ee, and >99 % ee, respectively. Using a NADPH-regenerating system, 10 mM 2-MPN was converted to amine with 100 % conversion and 92 % ee after 24 h. The amino acid sequence analysis revealed that SIR showed about 60 % identity to 6-phosphogluconate dehydrogenase. However, it showed only 37 % identity with Streptomyces sp. GF3587 (R)-imine reductase. Expression of SIR in Escherichia coli was achieved, and specific activity of the cell-free extract was about two times higher than that of the cell-free extract of Streptomyces sp. GF3546.  相似文献   

7.
A codon-optimized 2-deoxyribose-5-phosphate aldolase (DERA) gene was newly synthesized and expressed in Escherichia coli to investigate its biochemical properties and applications in synthesis of statin intermediates. The expressed DERA was purified and characterized using 2-deoxyribose-5-phosphate as the substrate. The specific activity of recombinant DERA was 1.8 U/mg. The optimum pH and temperature for DERA activity were pH 7.0 and 35 °C, respectively. The recombinant DERA was stable at pH 4.0–7.0 and at temperatures below 50 °C. The enzyme activity was inhibited by 1 mM of Ni2+, Ba2+ and Fe2+. The apparent K m and V max values of purified enzyme for 2-deoxyribose-5-phosphate were 0.038 mM and 2.9 μmol min?1 mg?1, for 2-deoxyribose were 0.033 mM and 2.59 μmol min?1 mg?1, respectively, which revealed that the enzyme had similar catalytic efficiency towards phosphorylated and non-phosphorylated substrates. To synthesize statin intermediates, the bioconversion process for production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose from chloroacetaldehyde and acetaldehyde by the recombinant DERA was developed and a conversion of 94.4 % was achieved. This recombinant DERA could be a potential candidate for application in production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose.  相似文献   

8.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

9.
Natural rubber is a valuable source of income in many tropical countries and rubber trees are increasingly planted in tropical areas, where they contribute to land-use changes that impact the global carbon cycle. However, little is known about the carbon balance of these plantations. We studied the soil carbon balance of a 15-year-old rubber plantation in Thailand and we specifically explored the seasonal dynamic of soil CO2 efflux (F S) in relation to seasonal changes in soil water content (W S) and soil temperature (T S), assessed the partitioning of F S between autotrophic (R A) and heterotrophic (R H) sources in a root trenching experiment and estimated the contribution of aboveground and belowground carbon inputs to the soil carbon budget. A multiplicative model combining both T S and W S explained 58 % of the seasonal variation of F S. Annual soil CO2 efflux averaged 1.88 kg C m?2 year?1 between May 2009 and April 2011 and R A and R H accounted for respectively 63 and 37 % of F S, after corrections of F S measured on trenched plots for root decomposition and for difference in soil water content. The 4-year average annual aboveground litterfall was 0.53 kg C m?2 year?1 while a conservative estimate of belowground carbon input into the soil was much lower (0.17 kg C m?2 year?1). Our results highlighted that belowground processes (root and rhizomicrobial respiration and the heterotrophic respiration related to belowground carbon input into the soil) have a larger contribution to soil CO2 efflux (72 %) than aboveground litter decomposition.  相似文献   

10.
(S)-Styrene oxide, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4-CSO with 99.9 %ee were obtained with a yield of 20.6, 39.3, 28.7 and 26.8 % from 4 mM corresponding racemic substrates using 10 mg cells of a newly-isolated Sphingopyxis sp. at pH 8.0 and 25 °C in 1 ml 100 mM Tris/HCl buffer after 420, 100, 120 and 55 min, respectively. For racemic 2CSO, well-known for one of the racemates that is difficult to obtained in enantiomerically pure form, (S)-2-CSO with 99.9 %ee, 39.3 % yield (theoretical yield 50 %) and enantiomeric ratio of 42.1 was obtained. The newly-isolated strain can thus be used as whole-cell biocatalyst in the production of various (S)-CSO with a chlorine group at different positions.  相似文献   

11.
A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate–polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD+-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.  相似文献   

12.
We modelled the production of hydroxy fatty acids from oleic acid by Pseudomonas aeruginosa 42A2 in a bioreactor with a non-dispersive aeration system. First, we designed an adapted wetted-wall gas-absorption column, offering a k La value of 39.9 h?1, to enhance oxygen absorption in the culture media and prevent foam formation. Then, we analysed different kinetic models to simulate the yield coefficients and the kinetic constants in this bacterial transformation. Monod model fitting (μ max1?=?0.51 h?1, K S1?=?1.60 C-mol l?1, μ max2?=?0.12 h?1, K S2?=?0.035 C-mol l?1, and k 2?=?0.033 h?1) showed a good accuracy with the experimental data sets and was chosen for its simplicity. Lastly, mass balances were carried out to establish the stoichiometry of this biotransformation with the following yield coefficients, Υ X/OA, Υ X/(10S)-HPOME and Υ (10S)-HPOME/(7S10S)-HPOME of 0.172, 0.347 and 2.388 C-mol C-mol?1, respectively.  相似文献   

13.
A new strain, Enterobacter sp. ECU1107, was identified among over 200 soil isolates using a two-step screening strategy for the enantioselective synthesis of (2S,3R)-3-phenylglycidate methyl ester (PGM), a key intermediate for production of a potent anticancer drug Taxol®. An organic–aqueous biphasic system was employed to reduce spontaneous hydrolysis of the substrate PGM and isooctane was found to be the most suitable organic solvent. The temperature and pH optima of the whole cell-mediated bioreaction were 40 °C and 6.0, respectively. Under these reaction conditions, the enantiomeric excess (ee s) of (2S,3R)-PGM recovered was greater than 99 % at approximately 50 % conversion. The total substrate loading in batch reaction could reach 600 mM. By using whole cells of Enterobacter sp. ECU1107, (2S,3R)-PGM was successfully prepared in decagram scale in a 1.0-l mechanically stirred reactor, affording the chiral epoxy ester in >99 % ee s and 43.5 % molar yield based on the initial load of racemic substrate.  相似文献   

14.
The meso-2,3-butanediol dehydrogenase (meso-BDH) from S. marcescens H30 is responsible for converting acetoin into 2,3-butanediol during sugar fermentation. Inactivation of the meso-BDH encoded by budC gene does not completely abolish 2,3-butanediol production, which suggests that another similar enzyme involved in 2,3-butanediol formation exists in S. marcescens H30. In the present study, a glycerol dehydrogenase (GDH) encoded by gldA gene from S. marcescens H30 was expressed in Escherichia coli BL21(DE3), purified and characterized for its properties. In vitro conversion indicated that the purified GDH could catalyze the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol was not a substrate for the GDH at all. Kinetic parameters of the GDH enzyme showed lower K m value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, implying its physiological role in favor of 2,3-butanediol formation. Maximum activity for reduction of (3S/3R)-acetoin and oxidations of meso-2,3-butanediol and glycerol was observed at pH 8.0, while it was pH 7.0 for diacetyl reduction. The enzyme exhibited relative high thermotolerance with optimum temperature of 60 °C in the oxidation–reduction reactions. Over 60 % of maximum activity was retained at 70 °C. Additionally, the GDH activity was significantly enhanced for meso-2,3-BD oxidation in the presence of Fe2+ and for (3S/3R)-acetoin reduction in the presence of Mn2+, while several cations inhibited its activity, particularly Fe2+ and Fe3+ for (3S/3R)-acetoin reduction. The properties provided potential application for single configuration production of acetoin and 2,3-butanediol .  相似文献   

15.
The benzoylformate decarboxylase gene (mdlC) from Pseudomonas putida was expressed in Escherichia coli BL21(DE3). The recombinant strain together with E. coli/pET30a-mdlB converted (S)-3-ethoxy-4-hydroxymandelic acid (S-EMA) into ethyl vanillin without ethyl vanillin degradation. 4 g ethyl vanillin/l was obtained from 10 g EMA/l within 12 h at 30 °C. This is the first report on the biotransformation of (S)-EMA to ethyl vanillin.  相似文献   

16.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l?1), yeast extract (25.93 g l?1), and corn steep liquor (10.45 g l?1) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW?1) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet?1 h?1. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose.  相似文献   

17.
A novel oligomeric SGNH hydrolase (Est24) from Sinorhizobium meliloti was identified, actively expressed in Escherichia coli, characterized, and immobilized for industrial application. Sequence analysis of Est24 revealed a putative catalytic triad (Ser13-Asp163-His169), with moderate homology to other SGNH hydrolases. Est24 was more active toward short-chain esters, such as p-nitrophenyl acetate, butyrate, and valerate, while the S13A mutant completely lost its activity. Moreover, the activity of Est24 toward α- and β-naphthyl acetate, and enantioselectivity on (R)- and (S)-methyl-3-hydroxy-2-methylpropionate were tested. Est24 exhibited optimum activity at mesophilic temperature ranges (45–55 °C), and slightly alkaline pH (8.0). Structural and mutagenesis studies revealed critical residues involved in the formation of a catalytic triad and substrate-binding pocket. Cross-linked enzyme aggregates (CLEAs) of Est24 with and without amyloid fibrils were prepared, and amyloid fibril-linked Est24 with amyloid fibrils retained 83 % of its initial activity after 1 h of incubation at 60 °C. The high thermal stability of immobilized Est24 highlights its potential in the pharmaceutical and chemical industries.  相似文献   

18.
This study focused on the cloning, expression, and characterization of ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum KACC 20028T in order to biotransform ginsenosides efficiently. The gene, termed as bglAm, encoding a β-glucosidase (BglAm) belonging to the glycoside hydrolase family 3 was cloned. bglAm consisted of 1,830 bp (609 amino acid residues) with a predicted molecular mass of 65,277 Da. This enzyme was overexpressed in Escherichia coli BL21(DE3) using a GST-fused pGEX 4T-1 vector system. The recombinant BglAm was purified with a GST·bind agarose resin and characterized. The optimum conditions of the recombinant BglAm were pH 7.0 and 37 °C. BglAm could hydrolyze the outer and inner glucose moieties at the C3 and C20 of the protopanaxadiol-type ginsenosides (i.e., Rb1 and Rd, gypenoside XVII) to produce protopanaxadiol via gypenoside LXXV, F2, and Rh2(S) with various pathways. BglAm can effectively transform the ginsenoside Rb1 to gypenoside XVII and Rd to F2; the K m values of Rb1 and Rd were 0.69?±?0.06 and 0.45?±?0.02 mM, respectively, and the V max values were 16.13?±?0.29 and 51.56?±?1.35 μmol min?1 mg?1 of protein, respectively. Furthermore, BglAm could convert the protopanaxatriol-type ginsenoside Re and Rg1 into Rg2(S) and Rh1(S) hydrolyzing the attached glucose moiety at the C6 and C20 positions, respectively. These various ginsenoside-hydrolyzing pathways of BglAm may assist in producing the minor ginsenosides from abundant major ginsenosides.  相似文献   

19.
An NADPH-dependent sorbose reductase from Candida albicans was identified to catalyze the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE). The activity of the recombinant enzyme toward COBE was 6.2 U/mg. The asymmetric reduction of COBE was performed with two coexisting recombinant Escherichia coli strains, in which the recombinant E. coli expressing glucose dehydrogenase was used as an NADPH regenerator. An optical purity of 99% (e.e.) and a maximum yield of 1240 mM (S)-4-chloro-3-hydroxybutanoate were obtained under an optimal biomass ratio of 1:2. A highest turnover number of 53,900 was achieved without adding extra NADP+/NADPH compared with those known COBE-catalytic systems.  相似文献   

20.
Enantioselective oxidation of racemic phenyl-1,2-ethanediol into (R)-(?)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1 was demonstrated. It was found that optically active (R)-(?)-mandelic acid (e.e.p?>?99.9 %) is produced leaving the other enantiomer (S)-(+)-phenyl-1,2-ethanediol intact. Using fed-batch method, a total of 172.9 mM (R)-(?)-mandelic acid accumulated in the reaction mixture after the seventh feed. Moreover, oxidation of phenyl-1,2-ethanediol using calcium alginate-entrapped resting cells was carried out in the aqueous system, and efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 27.94 g (R)-(?)-mandelic acid g?1 dry cell weight cell after 16 cycles of repeated use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号