首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MDL 27048 [trans-1-(2,5-dimethoxyphenyl)-3-[4-(dimethylamino)phenyl]-2- methyl-2-propen-1-one] fluoresces when bound to tubulin but not in solution. This effect has been investigated and found to be mimicked by viscous solvents. Therefore, MDL 27048 appears to be a fluorescent compound whose intramolecular rotational relaxation varies as a function of microenvironment viscosity. The binding parameters of MDL 27048 to tubulin have been firmly established by fluorescence of the ligand, quenching of the protein fluorescence, and gel equilibrium chromatography. The apparent binding equilibrium constant was (2.75 +/- 0.45) x 10(6)M-1, and the binding site number was 0.81 +/- 0.12 (10 mM sodium phosphate-0.1 mM GTP, pH 7.0, at 25 degrees C). The binding is exothermic. The binding of MDL 27048 overlaps the colchicine and podophyllotoxin binding sites. Binding of MDL 27048 to the colchicine site was also measured by competition with MTC [2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one] , a well-characterized reversibly binding probe of the colchicine site [Andreu et al. (1984) Biochemistry 23, 1742-1752; Bane et al., (1984) J. Biol. Chem. 259, 7391-7398]. In contrast with close analogues of colchicine, MDL 27048 and podophyllotoxin neither affected the far-ultraviolet circular dichroism spectrum of tubulin, within experimental error, nor induced tubulin GTPase activity. Like podophyllotoxin, an excess of MDL 27048 over tubulin induced no abnormal cooperative polymerization of tubulin, which is characteristic of colchicine binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The interactions of tubulin with colchicine analogues in which the tropolone methyl ether ring had been transformed into a p-carbomethoxybenzene have been characterized. The analogues were allocolchicine (ALLO) and 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB), the first being transformed colchicine and the second transformed colchicine with ring B eliminated. The binding of both analogues has been shown to be specific for the colchicine binding site on tubulin by competition with colchicine and podophyllotoxin. Both analogues bind reversibly to tubulin with the generation of ligand fluorescence. The binding of ALLO is slow, the fluorescence reaching a steady state in the same time span as colchicine; that of TCB is rapid. The displacement of ALLO by podophyllotoxin proceeds with a half-life of ca. 40 min. Binding isotherms generated from gel filtration and fluorescence measurements have shown that both analogues bind to tubulin with a stoichiometry of 1 mol of analogue/mol of alpha-beta tubulin. The equilibrium binding constants at 25 degrees C have been found to be (9.2 +/- 2.5) x 10(5) M-1 for ALLO and (1.0 +/- 0.2) X 10(5) M-1 for TCB. Binding of both analogues was accompanied by quenching of protein fluorescence, perturbation of the far-ultraviolet circular dichroism of tubulin, and induction of the tubulin GTPase activity, similarly to colchicine binding. Both inhibited microtubule assembly in vitro, ALLO substoichiometrically, and both induced the abnormal cooperative polymerization of tubulin, which is characteristic of the tubulin-colchicine complex. Analysis in terms of the simple bifunctional ligand binding mechanism developed for colchicine [Andreu, J.M., & Timasheff, S.N. (1982) Biochemistry 21, 534-543] and comparison with the binding of the colchicine two-ring analogue, 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one [Andreu, J. M., Gorbunoff, M. J., Lee, J. C., & Timasheff, S. N. (1984) Biochemistry 23, 1742-1752], have shown that transformation of the tropolone methyl ether part of colchicine into p-carbomethoxybenzene weakens the standard free energy of binding to tubulin by 1.4 +/- 0.1 kcal/mol, while elimination of ring B weakens it by 1.0 +/- 0.1 kcal/mol. The roles of rings C and B of colchicine in the thermodynamic and kinetic mechanisms of binding to tubulin were analyzed in terms of these findings.  相似文献   

3.
Isocolchicine is a structurally related isomer of colchicine altered in the methoxytropone C ring. In spite of virtual structural homology of colchicine and isocolchicine, isocolchicine is commonly believed to be inactive in binding to tubulin and inhibiting microtubule assembly. We have found that isocolchicine does indeed bind to the colchicine site on tubulin, as demonstrated by its ability to competitively inhibit [3H]colchicine binding to tubulin with a KI approximately 400 microM. Isocolchicine inhibits tubulin assembly into microtubules with an I50 of about 1 mM, but the affinity of isocolchicine for the colchicine receptor site, 5.5 +/- 0.9 x 10(3) M-1 at 23 degrees C, is much less (approximately 500-fold) than that of colchicine. Unlike colchicine, isocolchicine binds rapidly, and the absorption and fluorescence properties of the complex are only modestly altered compared to free ligand. It is proposed that the binding of isocolchicine to tubulin may be rationalized either in terms of conformational states of colchicinoids when liganded to tubulin or by the structural requirements for C-10 substituents for high affinity binding to the colchicine receptor.  相似文献   

4.
Two new aryl azides, (Z)-1-(3'-azido-4'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 9 and (Z)-1-(4'-azido-3'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 5, modeled after the potent antitumor, antimitotic agent combretastatin A-4 (CA-4), have been prepared by chemical synthesis as potentially useful photoaffinity labeling reagents for the colchicine site on beta-tubulin. Aryl azide 9, in which the 3'-hydroxyl group of CA-4 is replaced by an azido moiety, demonstrates excellent in vitro cytotoxicity against human cancer cell lines (NCI 60 cell line panel, average GI50 = 4.07 x 10(-8) M) and potent inhibition of tubulin polymerization (IC50 = 1.4+/-0.1 microM). The 4'-azido analogue 5 has lower activity (NCI 60 cell line panel, average GI50 = 2.28 x 10(-6) M, and IC50 = 5.2+/-0.2 microM for inhibition of tubulin polymerization), suggesting the importance of the 4'-methoxy moiety for interaction with the colchicine binding site on tubulin. These CA-4 aryl azide analogues also inhibit binding of colchicine to tubulin, as does the parent CA-4, and therefore these compounds are excellent candidates for photoaffinity labeling studies.  相似文献   

5.
Thiocolchicine, a colchicine analog in which the C-10 methoxy is replaced with a thiomethyl moiety, was shown to bind with high affinity to the colchicine site on tubulin (Ka = 1.07 +/- 0.14 x 10(6) M-1 at 23 degrees C). Like colchicine, the association kinetics were biphasic, and the rate constants of both phases were temperature dependent. The rate constant of the fast phase of the association was 4 times greater than the rate constant for colchicine binding, and the activation energy was lower (19.1 +/- 1.8 kcal/mol). X-ray crystallographic analysis shows that thiocolchicine displays greater puckering of the tropone C ring than colchicine (Koerntgen, C. and Margulis, T. N. (1977) J. Pharm. Sci. 66, 1127-1131.). These results indicate that the conformation of the C ring may have little effect on the energetics of colchicinoids binding to tubulin.  相似文献   

6.
Isocolcemid, a colcemid analogue in which the positions of the C-ring methoxy and carbonyl are exchanged, is virtually inactive in binding to tubulin and inhibiting the formation of microtubule assembly. We have found that the substitution of a NBD group in the side chain of the B-ring of isocolcemid can reverse the effect of these structural alterations (at the C-ring) and the newly synthesized NBD-isocolcemid restores the lost biological activity. It inhibits microtubule assembly with an IC(50) of 12 microM and competes efficiently with [(3)H]colchicine, for binding to tubulin. NBD-isocolcemid has two binding sites on tubulin; one is characterized by fast binding, whereas the binding to the other site is slow. These two sites are independent and unrelated to each other. Colchicine and its analogues compete with NBD-isocolcemid for the slow site. Association and dissociation rate constants for the fast site, obtained from the stopped-flow measurements, are (7.37 +/- 0. 70) x 10(5) M(-1) s(-1) and 7.82 +/- 2.74 s(-1), respectively. While the interaction of colchicine and its analogues with tubulin involves two steps, NBD-isocolcemid binding to tubulin at the slow site has been found to be a one-step reaction. This is evident from the linear dependence of the observed rate constant (k(obs)) with both NBD-isocolcemid and tubulin concentrations. The interaction of NBD-isocolcemid with tubulin does not involve the conformational change of NBD-isocolcemid, as is evident from the unchanged CD spectra of the drug. The absence of enhanced GTPase activity of tubulin and the native-like protease cleavage pattern of the NBD-isocolcemid-tubulin complex suggest an unaltered conformation of tubulin upon NBD-isocolcemid binding to it as well. Implications of this on the mechanism of polymerization inhibition have been discussed.  相似文献   

7.
Recombinant baculovirus particles displaying green fluorescent protein (GFP) fused to the major envelope glycoprotein gp64 of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) were characterized by fluorescence correlation spectroscopy (FCS). FCS detected Brownian motion of single, intact recombinant baculovirus display particles with a diffusion coefficient (D) of (2.89 +/- 0.74) x 10(-8) cm2s(-1) and an apparent hydrodynamic radius of 83.35 +/- 21.22 nm. In the presence of sodium dodecyl sulfate (SDS), Triton X-100, and octylglucoside, the diffusion time was reduced to the 0.2 ms range (D = 7.57 x 10(-7) cm2s(-1)), showing that the fusion proteins were anchored in the viral envelope. This allowed for a calculation of the number of single gp64 fusion proteins incorporated in the viral membrane. A mean value of 3.2 fluorescent proteins per virus particle was obtained. Our results show that FCS is the method of choice for studying enveloped viruses such as a display virus with one component being GFP.  相似文献   

8.
Tubulin, the constituent protein of microtubules, is an alpha beta heterodimer; both alpha and beta exist in several isotypic forms whose functional significance is not precisely known. The antimitotic alkaloid colchicine binds to mammalian brain tubulin in a biphasic manner under pseudo-first-order conditions in the presence of a large excess of colchicine (Garland, D. L. (1978) Biochemistry 17, 4266-4272). We have studied the kinetics of colchicine binding to purified beta-tubulin isotypes and find that each of the purified beta-tubulin isotypes binds colchicine in a monophasic manner. The apparent on-rate constants for the binding of colchicine to alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers are respectively 132 +/- 5, 30 +/- 2, and 236 +/- 7 M-1 s-1. When the isotypes are mixed, the kinetics become biphasic. Scatchard analysis revealed that the isotypes differ significantly in their affinity constants (Ka) for binding colchicine. The affinity constants are 0.24 x 10(6), 0.12 x 10(6), and 3.31 x 10(6) M-1, respectively, for alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers. Our results are in agreement with the hypothesis that the beta-subunit of tubulin plays a major role in the interaction of colchicine with tubulin. Our binding data raise the possibility that the tubulin isotypes might play important regulatory roles by interacting differently with other non-tubulin proteins in vivo, which in turn, may regulate microtubule-based functions in living cells.  相似文献   

9.
The thermal depolymerization procedure of Stephens (1970. J. Mol. Biol. 47:353) has been employed for solubilization of Strongylocentrotus purpuratus sperm tail outer doublet microtubules with the use of a buffer during solubilization which is of optimal pH and ionic strength for the preservation of colchicine binding activity of chick embryo brain tubulin. Colchicine binding values were corrected for first-order decay during heat solubilization at 50°C (t½ = 5.4 min) and incubation with colchicine at 37°C in the presence of vinblastine sulfate (t½ = 485 min). The colchicine binding properties of heat-solubilized outer doublet tubulin were qualitatively identical with those of other soluble forms of tubulin. The solubilized tubulin (mol wt, 115,000) bound 0.9 ± 0.2 mol of colchicine per mol of tubulin, with a binding constant of 6.3 x 105 liters/mol at 37°C. The colchicine binding reaction was both time and temperature dependent, and the binding of colchicine was prevented in a competitive manner by podophyllotoxin (Ki = 1.3 x 10-6 M). The first-order decay of colchicine binding activity was substantially decreased by the addition of the vinca alkaloids, vinblastine sulfate or vincristine sulfate, thus demonstrating the presence of a vinca alkaloid binding site(s) on the outer doublet tubulin. Tubulin contained within the assembled microtubules did not decay. Intact outer doublet microtubules bound less than 0.001 mol of colchicine per mol of tubulin contained in the microtubules, under conditions where soluble tubulin would have bound 1 mol of colchicine per mol of tubulin (saturating concentration of colchicine, no decay of colchicine binding activity). The presence of colchicine had no effect on the rate of solubilization of outer doublet microtubules during incubation at 37°C. Therefore, the colchicine binding site on tubulin is blocked (not available to bind colchicine) when the tubulin is in the assembled outer doublet microtubules.  相似文献   

10.
The interaction of tubulin with simple analogues of colchicine that contain both its tropolone and trimethoxyphenyl rings has been characterized, and the results were analyzed in terms of the simple bifunctional ligand model developed for the binding of colchicine [ Andreu , J. M., & Timasheff , S. N. (1982) Biochemistry 21, 534-543] on the basis of interactions of tubulin with single-ring analogues. The compound 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6- cycloheptatrien -1-one has been found to bind reversibly to 0.86 +/- 0.06 site of purified calf brain tubulin with an equilibrium constant of (4.9 +/- 0.3) X 10(5) M-1 (25 degrees C), delta H degrees app = -1.6 +/- 0.7 kcal mol-1, and delta S degrees app = 20.5 +/- 2.5 eu. The binding appears specific for the colchicine site. The closely related compound 2-methoxy-5-[[3-(3,4,5-trimethoxyphenyl)-propionyl]amino] -2,4,6- cycloheptatrien -1-one interacts weakly with tubulin. Binding of the first analogue is accompanied by ligand fluorescence appearance, quenching of protein fluorescence, perturbation of the far-ultraviolet circular dichroism of tubulin, and induction of the tubulin GTPase activity, similarly to colchicine binding. Substoichiometric concentrations of the analogue inhibit microtubule assembly in vitro. Excess analogue concentration under microtubule-promoting conditions induces an abnormal cooperative polymerization of tubulin, similar to that of the tubulin-colchicine complex.  相似文献   

11.
The uptake of [ring C-methoxyl-3H]colchicine into bovine anterior pituitary slices was studied. The data suggest that more than one site exists for the binding of colchicine. At low concentrations colchicine binds to saturable trypsin-sensitive site(s), with a dissociation constant of 3.1 +/- 0.69 mug. The binding capacity of these sites is 8.58 +/- 0.60 pmol of colchicine/mg of wet pituitary. At higher colchicine concentrations binding occurs predominantly to sites which exhibit non-saturation kinetics. Subcellular fractionation of colchicine-labelled slices shows that 90% of the saturable sites are present in the fraction containing cytosol, where the binding protein has a molecular weight of about 11.9 x 10(4) and constitutes 0.7% of the protein present. The nuclear fraction contains 10% of the saturable sites, and the mitochondria and granule fraction contain only non-saturable sites. The rate of colchicine uptake was studied at 0.84 mm- and 2mum-colchicine. At both concentrations the colchicine space exceeded the total tissue water within 10 min. Equilibration with the saturable binding sites was complete in 120 min at 2mum-colchicine. A concentration of colchicine (13.4 mum) which would give 81% maximum binding was found to decrease the length of observable microtubules in tissue fixed at 37 degrees C in glutaraldehyde by 83 +/- 4%. The colchicine-binding protein could be partially purified by using a standard procedure for isolation of brain tubulin. Colchicine inhibits the release of growth hormone in the presence of 3-isobutyl-1-methylxanthine (0.1 mm), but does not alter basal release. The concentration-dependence of colchicine inhibition is similar to that of colchicine binding, but maximum inhibition is only 35%.  相似文献   

12.
S B Hastie 《Biochemistry》1989,28(19):7753-7760
Allocolchicine is a structural isomer of colchicine in which colchicine's tropone C ring is replaced with an aromatic ester. In spite of the structural differences between the two ligands, the association parameters for both molecules binding to tubulin are quite similar. The association constant for allocolchicine binding to tubulin was determined by fluorescence titration to be 6.1 x 10(5) M-1 at 37 degrees C, which is about a factor of 5 less than that of the colchicine-tubulin association. In particular, analysis of the kinetics of the association of allocolchicine with tubulin yielded nearly equivalent activation parameters for the two ligands. The activation energy of the allocolchicine binding reaction was found to be 18.4 +/- 1.5 kcal/mol, which is only slightly less than the activation energy for colchicine binding to tubulin. This finding argues against conformational flexibility of the C ring as the structural feature of colchicine responsible for the slow kinetics of colchicinoid-tubulin binding reactions. Tubulin binding promote a dramatic enhancement of allocolchicine fluorescence. Unlike colchicine, the emission energy and intensity of the tubulin-bound allocolchicine fluorescence can be mimicked by solvent, and a general hydrophobic environment for the ligand binding site is indicated. The excitation spectrum of the protein-bound species, however, is shown to possess two bands which center at higher and lower energy than the energy maximum of the spectrum of the ligand in apolar solvents, indicating that properties of the colchicine binding site in addition to a low dielectric constant contribute to the fluorescence of the bound species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Vinblastine is an antimitotic agent that has been used extensively in cancer chemotherapy. The biological effects of the drug are believed to be the result of its interaction with tubulin, the major component of cellular microtubules. Fluorescence spectroscopy is a powerful and versatile technique for studying drug-tubulin interactions, but it rarely has been applied to studies involving vinca alkaloids. We have prepared a new fluorescent derivative of vinblastine designed to retain high affinity for tubulin while possessing a fluorophore that absorbs and emits visible light. A coumarin derivative of vinblastine, 17-deacetyl-O-(3-carbonylamino-7-diethylaminocoumarin) vinblastine (F-VLB), was prepared by reaction of 17-deacetylvinblastine with 7-diethylaminocoumarin-3-carbonyl azide. F-VLB was a potent inhibitor of in vitro microtubule assembly (IC(50) = 0.5 microM). F-VLB binding to tubulin was inhibited by vinblastine. Tubulin binding induced an increase in the F-VLB emission intensity and shifted the emission maximum to higher energy (from 500 to 480 nm). The Stokes shift of tubulin-bound F-VLB was about the same as the Stokes shift of the molecule in ethanol, indicating that the tubulin-bound fluorophore is probably on the exterior of the vinblastine binding site. Unlike vinblastine, F-VLB failed to induce self-assembly of tubulin that could be detected by light scattering or electron microscopy, although some self-association could be detected by analytical ultracentrifugation. Equilibrium binding parameters were quantitatively determined by monitoring the change in fluorescence anisotropy of F-VLB upon tubulin binding. The apparent equilibrium constant for F-VLB binding to tubulin [K(a)(app) = (7.7 +/- 0.5) x 10(4) M(-1) at 25 degrees C] was identical to the equilibrium constant for vinblastine binding to 2 microM tubulin (K(1)) measured under similar buffer and temperature conditions using ultracentrifugation [Vulevic, B., Lobert, S., and Correia, J. J. (1997) Biochemistry 36, 12828-12835]. Binding allocolchicine to tubulin did not significantly affect F-VLB's affinity for the protein [K(a)(app) = (9.1 +/- 0.4) x 10(4) M(-1) at 25 degrees C]. Analysis of the steady-state emission spectra yielded a distance between the colchicine and vinca binding sites on tubulin of approximately 40 A. F-VLB bound to paclitaxel- and glutaraldehyde-stabilized microtubules, with approximately equal affinity. We conclude that F-VLB can be used to obtain information about the vinblastine binding site on tubulin under equilibrium conditions.  相似文献   

14.
Curacin A is a potent competitive inhibitor of colchicine binding to tubulin, and it inhibits the growth of tumor cells. We prepared [(14)C]curacin A biosynthetically to investigate its interaction with tubulin. Binding was rapid, even at 0 degrees C, with a minimum k(f) of 4.4 x 10(3) M(-1) s(-1). We were unable to demonstrate any dissociation of the [(14)C]curacin A from tubulin. Consistent with these observations, the K(a) value was so high that an accurate determination by Scatchard analysis was not possible. The [(14)C]curacin A was released from tubulin following urea treatment, indicating that covalent bond formation does not occur. We concluded that curacin A binds more tightly to tubulin than does colchicine. Besides high-affinity binding to the colchicine site, we observed significant superstoichiometric amounts of the [(14)C]curacin A bound to tubulin, and Scatchard analysis confirmed the presence of two binding sites of relatively low affinity with a K(a) of 3.2 x 10(-5) M(-1).  相似文献   

15.
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a naphthoquinone isolated from the roots of Plumbaginaceae plants, has potential antiproliferative activity against several tumor types. We have examined the effects of plumbagin on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human non-small lung epithelium carcinoma cells (A549) indicated that the IC 50 value for plumbagin is 14.6 microM. Immunofluorescence studies using an antitubulin FITC conjugated antibody showed a significant perturbation of the interphase microtubule network in a dose dependent manner. In vitro polymerization of purified tubulin into microtubules is inhibited by plumbagin with an IC 50 value of 38 +/- 0.5 microM. Its binding to tubulin quenches protein tryptophan fluorescence in a time and concentration dependent manner. Binding of plumbagin to tubulin is slow, taking 60 min for equilibration at 25 degrees C. The association reaction kinetics is biphasic in nature, and the association rate constants for fast and slow phases are 235.12 +/- 36 M (-1) s (-1) and 11.63 +/- 11 M (-1) s (-1) at 25 degrees C respectively. The stoichiometry of plumbagin binding to tubulin is 1:1 (mole:mole) with a dissociation constant of 0.936 +/- 0.71 microM at 25 degrees C. Plumbagin competes for the colchicine binding site with a K i of 7.5 microM as determined from a modified Dixon plot. Based on these data we conclude that plumbagin recognizes the colchicine binding site to tubulin. Further study is necessary to locate the pharmacophoric point of attachment of the inhibitor to the colchicine binding site of tubulin.  相似文献   

16.
Colchicine binding in the free-living nematode Caenorhabditis elegans   总被引:1,自引:0,他引:1  
The [3H]colchicine-binding activity of a crude supernatant of the free-living nematode Caenorhabditis elegans was resolved into a non-saturable component and a tubulin-specific component after partial purification of tubulin by polylysine affinity chromatography. The two fractions displayed opposing thermal dependencies of [3H]colchicine binding, with non-saturable binding increasing, and tubulin binding decreasing, at 4 degrees C. Binding of [3H]colchicine to C.elegans tubulin at 37 degrees C is a pseudo-first-order rate process with a long equilibration time. The affinity of C. elegans tubulin for [3H]colchicine is relatively low (Ka = 1.7 x 10(5) M(-1)) and is characteristic of the colchicine binding affinities observed for tubulins derived from parasitic nematodes. [3H]Colchicine binding to C. elegans tubulin was inhibited by unlabelled colchicine, podophyllotoxin and mebendazole, and was enhanced by vinblastine. The inhibition of [3H]colchicine binding by mebendazole was 10-fold greater for C. elegans tubulin than for ovine brain tubulin. The inhibition of [3H]colchicine binding to C. elegans tubulin by mebendazole is consistent with the recognised anthelmintic action of the benzimidazole carbamates. These data indicate that C. elegans is a useful model for examining the interactions between microtubule inhibitors and the colchicine binding site of nematode tubulin.  相似文献   

17.
The synthesis of a fluorescent colchicine derivative permits the localization of colchicine-binding receptors in cells. Fluorescein colchicine (FC) was prepared by the addition of fluorescein isothiocyanate to deacetyl colchicine. The product, FC, was separated from the reactants by thin-layer chromatography (TLC). The purity of FC was demonstrated by TLC, UV spectral analysis, and analysis of the kinetics of photodecomposition. FC inhibited [3H] colchicine binding to purified brain tubulin. The biological activity of FC was compared to the activity of unlabeled colchicine on mitosis, motility, secretion, and myogenesis. The effects of FC were identical to those of unlabeled colchicine in all biological systems tested. The results demonstrate that FC may be substituted for colchicine in biological experiments without significant loss in specificity or effectiveness.  相似文献   

18.
A new photoaffinity analogue of colchicine, (2-nitro-4-azidophenyl)deacetylcolchicine (NAPDAC), bound to two classes of sites on bovine renal tubulin and photolabeled both the alpha- and beta-subunits. The apparent Ki for the photoaffinity analogue was 1.40 +/- 0.17 microM (mean +/- SD, n = 3) as measured by competition with [3H] colchicine. Values of the apparent KdS for the two sites, as measured by the direct binding of the [3H]NAPDAC to tubulin, were 0.48 +/- 0.11 microM and 11.6 +/- 3.5 microM (mean +/- SD, n = 6), and the corresponding stoichiometries of binding of the two sites were 0.25 +/- 0.06 and 1.3 +/- 0.4 mol/mol of tubulin (mean +/- SD, n = 6). NAPDAC was a potent inhibitor of microtubule formation as detected by electron microscopy. When tubulin was photolabeled with NAPDAC at 25 degrees C, 15 +/- 3 mol % (mean +/- SD, n = 6) of the [3H]NAPDAC was covalently bound to the alpha-subunit, and 67 +/- 9 mol % (mean +/- SD, n = 6) was covalently bound to the beta-subunit. Since NAPDAC is a mixture of two interconvertible diastereomers, the photoincorporation of each was also examined. One diastereomer photolabeled both alpha- and beta-tubulin; however, the other did not significantly photolabel either subunit. Tubulin photolabeled with NAPDAC (1:1 mole ratio) exhibited a 23% decrease in colchicine binding. Preblocking and prephotolysis experiments with colchicine, NAPDAC, or ANPAH-CLC [Williams et al. (1985) J. Biol. Chem. 260, 13794-13802] provided evidence for conformational changes in tubulin upon colchicine binding. Peptide maps of [3H]NAPDAC-labeled alpha- and beta-tubulin, using Staphylococcus aureus V8 protease, demonstrated the presence of NAPDAC in one peptide of the alpha-subunit and in five peptides of the beta-subunit as detected by autoradiography. NAPDAC provides the first direct evidence for two colchicine binding sites on tubulin.  相似文献   

19.
C M Lin  H H Ho  G R Pettit  E Hamel 《Biochemistry》1989,28(17):6984-6991
Combretastatin A-4 (CS-A4), 3,4,5-trimethoxy-3'-hydroxy-4'-methoxy-(Z)-stilbene, and combretastatin A-2 (CS-A2), 3,4-(methylenedioxy)-5-methoxy-3'-hydroxy-4'-methoxy-(Z)-stilbene, are structurally simple natural products isolated from the South African tree Combretum caffrum. They inhibit mitosis and microtubule assembly and are competitive inhibitors of the binding of colchicine to tubulin [Lin et al. (1988) Mol. Pharmacol. 34, 200-208]. In contrast to colchicine, drug effects on tubulin were not enhanced by preincubating CS-A4 or CS-A2 with the protein. The mechanism of their binding to tubulin was examined indirectly by evaluating their effects on the binding of radiolabeled colchicine to the protein. These studies demonstrated rapid binding of both compounds to tubulin even at 0 degrees C (binding was complete at the earliest times examined), in contrast to the relatively slow and temperature-dependent binding of colchicine. Although the binding of the C. caffrum compounds to tubulin was quite tight, permitting ready isolation of near-stoichiometric amounts of drug-tubulin complex even in the absence of free drug, both CS-A4 and CS-A2 dissociated rapidly from tubulin in the presence of high concentrations of radiolabeled colchicine. Apparent rate constants for drug dissociation from tubulin at 37 degrees C were 3.2 x 10(-3) s-1 for CS-A4, 4.8 x 10(-3) s-1 for CS-A2, and 2.9 x 10(-5) s-1 for colchicine (half-lives of 3.6, 2.4, and 405 min, respectively). Thus, the effectiveness of the C. caffrum compounds as antimitotic agents appears to derive primarily from the rapidity of their binding to tubulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Role of lysine residues in the colchicine binding site and in the assembly-disassembly process was examined. It was observed that at 4 degrees C (pH 7.5-8, 8 +/- 1) lysine residues and the N-terminal methionine residue of tubulin were all buried within the molecule. Evidence indicates that epsilon-amino groups of lysine residues of tubulin are shared by both the colchicine binding site and the polymerisation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号