首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
Using aequorin-loaded rat platelets stimulated with collagen, we found two phases of Ca2+ mobilization, one coinciding with a shape change and the other with aggregation, which have not yet been detected in quin2-loaded platelets. U46619, a stable analogue of prostaglandin H2, induced only a shape change and a concomitant rapid rise in the cytoplasmic ionized calcium concentration ([Cai2+]). However, upon addition of U46619 to platelets previously stimulated with collagen in the presence of indomethacin, a rapid increase in [Cai2+] and a shape change occurred, and, after about 1 min, second increase in [Cai2+] and aggregation occurred. The actions of U46619 were inhibited by an antagonist for the thromboxane A2 (TXA2) receptor. These results suggest that the collagen-induced shape change is initiated by TXA2-induced Ca2+ mobilization, and aggregation is induced by the secondary Ca2+ mobilization induced by TXA2 and the occupation of the receptor by collagen.  相似文献   

2.
The hypothesis was tested that the hetrazepine WEB 2086 acts as an inhibitor of PAF-induced platelet aggregation via interaction with the platelet benzodiazepine receptor(BDZR). WEB 2086 is a potent inhibitor of rabbit platelet aggregation and ATP secretion induced by 370 nM PAF. The two BDZR ligands RO 5-4864 and RO 15-1788 (7-96 microM) are inactive as PAF antagonists. When platelets were pretreated with either BDZR ligand, and then exposed to various concentrations of WEB 2086, there was no alteration of the dose-response relationship of the hetrazepine on PAF-induced aggregation, as reflected by threshold concentration, ED50, or maximum inhibition seen with WEB 2086. Pretreatment of platelets with the BDZR ligands also failed to block the inhibitory action of WEB 2086 on PAF-induced ATP release. The data are consistent with the notion that WEB 2086 acts as a PAF antagonist through its action at a specific PAF receptor, and is dissociated from, and independent of, interaction with the benzodiazepine receptor.  相似文献   

3.
Oxidant stress contributes to the pathogenesis of hypoxic-ischemic encephalopathies. Platelet-activating factor (PAF) is generated during oxidant stress. We studied the vasomotor mode of actions of PAF on periventricular (PV) microvessels of fetal ( approximately 75% of term), newborn (1-3 days), and adult pigs. PAF constricted PV microvessels from fetal (29.27 +/- 2.6%) and newborn (22.14 +/- 3.2%) pigs but was ineffective in adults (<2.5%). Specific [(3)H]PAF binding was greater in fetus and newborn than in adults; a concordant developmental PAF-induced inositol phosphate formation was observed. PAF-induced vasoconstriction was abrogated by thromboxane A(2) (TXA(2)) synthase and receptor inhibitors, calcium channel blockers, and by removal of endothelium; vasoconstriction to TXA(2) mimetic U-46619 did not differ with age. Immunoreactive TXA(2) synthase expression and PAF-evoked TXA(2) formation revealed a fetus> newborn>adult profile. Thus the greater PAF-induced PV microvascular constriction in younger subjects seems attributable to greater PAF receptor density and mostly secondary to TXA(2) formation from endothelium. The resulting decrease in blood flow may contribute to the increased vulnerability of the PV brain regions to oxidant stress-induced injury in immature subjects.  相似文献   

4.
The role of platelet prostanoids and substances released from dense bodies (ADP and serotonin) in the initial attachment, spreading and aggregation of platelets on surfaces coated with I, III, IV and V genetic types of collagen was investigated. A positive linear correlation was found to exist between thrombi-like aggregate formation on collagen substrates and platelet prostanoid synthesis. No correlation was established between platelet aggregate formation and 14C-serotonin release. The cyclooxygenase inhibitor indomethacin and the antagonists of PG endoperoxides and TXA2 (13-APA and BM 13.177) completely block thrombi-like aggregate formation. Neither 13-APA nor BM 13.177 affect platelet spreading, while indomethacin inhibits this process by 25%. The ADP-scavenger CP/CPK inhibits platelet aggregation and spreading by 25-30%. The inhibitors of cyclooxygenase and CP/CPK do not influence the initial attachment of platelets. The data obtained suggest that thrombi-like aggregate formation on collagen substrates is mediated by the synthesis of PG endoperoxides and TXA2; however, in platelet spreading this synthesis plays a limited role. Spreading and aggregation of platelets on collagen substrates is only partly mediated by ADP and serotonin. Initial attachment of platelets does not depend on ADP and serotonin release and PG endoperoxide/TXA2 synthesis.  相似文献   

5.
1. The platelet aggregation response to several known platelet agonists was evaluated in four Asian elephants. The platelets were highly responsive to stimulation with platelet-activating factor (PAF) and collagen, less responsive to adenosine diphosphate (ADP) and non-responsive to arachidonic acid, serotonin and epinephrine. 2. Arachidonic acid (1 x 10(-4) M), while inducing no aggregation, caused the release of 1248 +/- 1147 pg/ul (mean +/- SD) of thromboxane B2 (TXB2), the stable metabolite of thromboxane A2 from stimulated platelet. The addition of 1 x 10(-4) M ADP to platelets caused suboptimal aggregation and the release of only 25 +/- 10 pg TXB2/microliters. 3. The calcium channel blocker, verapamil, produced a dose-dependent inhibition of PAF-induced but not collagen-induced aggregation. The cyclooxygenase inhibitor, acetylsalicylic acid, produced no inhibition of either collagen- or PAF-induced aggregation.  相似文献   

6.
CV-3988 - a specific antagonist of platelet activating factor (PAF)   总被引:20,自引:0,他引:20  
CV-3988, rac-3-(N-n-octadecylcarbamoyloxy)-2-methoxypropyl 2-thiazolioethyl phosphate was shown to be a specific inhibitor of platelet activating factor (PAF). This compound in concentrations of 3 x 10(-6) to 3 x 10(-5)M inhibited aggregation of rabbit platelets induced by PAF (3 x 10(-8)M), while it had no effect on the aggregation induced by arachidonic acid, ADP, collagen or A-23187. CV-3988 alone even at a concentration of 10(-3)M had no effect on platelet aggregation. The inhibitory action of CV-3988 on the PAF-induced aggregation was independent of the formation of micelles. The PAF (0.1 to 1.0 micrograms/kg, i.v.)-induced hypotension in anesthetized rats was also inhibited dose-dependently by the i.v. administration of CV-3988 (1 and 10 mg/kg), while the hypotensive actions induced by the i.v. administration of acetylcholine (1 micrograms/kg), arachidonic acid (1 mg/kg), bradykinin (10 micrograms/kg), isoproterenol (1 microgram/kg) and histamine (100 micrograms/kg) were not altered by CV-3988 (10 mg/kg, i.v.). All these findings indicate that CV-3988 specifically inhibits the action of PAF in vitro and in vivo. This is the first report of a PAF antagonist which can specifically inhibit the PAF-induced hypotension as well as the PAF-induced platelet aggregation.  相似文献   

7.
C P Cox  J Linden  S I Said 《Peptides》1984,5(2):325-328
Platelet-activating factor (PAF), a potent endogenous phospholipid released by a variety of mammalian cells, induces platelet activation in vivo and in vitro. Little is known, however, about the physiological modulation of its actions. We have examined the ability of two naturally occurring compounds which stimulate cAMP production, vasoactive intestinal peptide (VIP) and prostacyclin (PGI2), to inhibit PAF-induced platelet aggregation and secretion in vitro. Washed, [3H]serotonin-labeled, rabbit platelets were incubated 60 sec in the presence of VIP, PGI2 or 3-isobutyl-1-methylxanthine (IBMX) and subsequently stimulated with PAF. In separate studies, cAMP levels were determined in similar aliquots of platelets incubated for 30 sec with VIP, PGI2 or IBMX. VIP, PGI2 and IBMX inhibited platelet aggregation and secretion in a dose-dependent manner. Fifty percent inhibition was achieved at final concentrations of 1.7 X 10(6) M VIP, 3.6 X 10(6) M PGI2 and 6.5 X 10(5) M IBMX. IBMX potentiated the inhibitory effects of VIP and PGI2 on PAF-induced platelet activation. VIP and PGI2 elevated platelet cAMP levels four-fold and 50-fold, respectively, in the presence of 10(3) M IBMX. These findings demonstrate that VIP inhibits PAF-induced platelet activation, with a potency comparable to that of PGI2.  相似文献   

8.
A stable thromboxane A2 (TXA2) mimetic, U46619, induced a shape change of rat platelets, but did not induce phosphoinositide breakdown, aggregation or secretion. However, when U46619 was added to platelets which had been previously stimulated with collagen in the presence of indomethacin, all biological responses were induced about 1 min after the occurrence of shape change. Furthermore, two phases of phosphorylation of myosin light chain (MLC) were observed under the same conditions, one coinciding with shape change and the other with aggregation. Similar two-phase Ca2+ mobilization has been observed using aequorin (Nakano, T., Terawaki, A., & Arita, H. (1986) J. Biochem. 99, 1285-1288). From these results, collagen-induced signal transduction is considered to be composed of three stages. The first stage is the initial TXA2 generation. The second stage involves inositol trisphosphate-independent first-phase Ca2+ mobilization and the first-phase MLC phosphorylation by the action of TXA2 alone, leading to the shape change of platelets. The third stage is initiated by an abrupt phosphoinositide breakdown via the synergistic action of TXA2 and occupation of the collagen receptor, and the resulting inositol trisphosphate may induce the second-phase Ca2+ mobilization to produce the second-phase MLC phosphorylation together with aggregation and secretion.  相似文献   

9.
Platelet secretion (exocytosis) is critical in amplifying platelet activation, in stabilizing thrombi, and in arteriosclerosis and vascular remodeling. The signaling mechanisms leading to secretion have not been well defined. We have shown previously that cGMP-dependent protein kinase (PKG) plays a stimulatory role in platelet activation via the glycoprotein Ib-IX pathway. Here we show that PKG also plays an important stimulatory role in mediating aggregation-dependent platelet secretion and secretion-dependent second wave platelet aggregation, particularly those induced via Gq-coupled agonist receptors, the thromboxane A2 (TXA2) receptor, and protease-activated receptors (PARs). PKG I knock-out mouse platelets and PKG inhibitor-treated human platelets showed diminished aggregation-dependent secretion and also showed a diminished secondary wave of platelet aggregation induced by a TXA2 analog and thrombin receptor-activating peptides that were rescued by the granule content ADP. Low dose collagen-induced platelet secretion and aggregation were also reduced by PKG inhibitors. Furthermore PKG I knockout and PKG inhibitors significantly attenuated activation of the Gi pathway that is mediated by secreted ADP. These data unveil a novel PKG-dependent platelet secretion pathway and a mechanism by which PKG promotes platelet activation.  相似文献   

10.
The interaction of a plasmalogenic analog of platelet-activating factor (1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phosphocholine; 1-alkenyl-PAF) with human platelets was studied. 1-Alkenyl-PAF induced an increase in intracellular Ca2+ concentration and inhibition of adenylate cyclase at significantly higher concentrations than PAF. 1-Alkenyl-PAF inhibits PAF-induced platelet aggregation but has no effect on ADP- or thrombin-induced aggregation of human platelets. In contrast to PAF, 1-alkenyl-PAF increases [3H]PGE1 binding with human platelets. The properties of 1-alkenyl-PAF as an agonist or antagonist of PAF receptors apparently depend on its concentration in the cell medium. Under physiological conditions 1-alkenyl-PAF might be a natural PAF antagonist acting in the human cardiovascular system.  相似文献   

11.
In an earlier study (Miwa, M., Hill, C., Kumar, R., Sugatani, J., Olson, M. S., and Hanahan, D. J. (1987) J. Biol. Chem. 262, 527-530) it was shown that an inhibitor of platelet-activating factor (PAF), a powerful endogenous mediator of platelet aggregation, was present in freeze-clamped perfused livers. Subsequently, we determined that this substance was a mixture of unsaturated free fatty acids (FFA). Among these FFA, oleic acid between 10 and 100 microM was found to be a potent inhibitor of PAF-induced platelet aggregation and serotonin secretion. Consequently, in order to understand the molecular mechanism of oleic acid action, we investigated the effects of this FFA on several biochemical events associated with platelet aggregation induced by PAF. The effect of oleic acid and/or PAF on the level of [32P]phosphatidylinositol 4-phosphate (PIP) and [32P]phosphatidylinositol 4,5-bisphosphate (PIP2) was examined by using platelets labeled with [32P]phosphate. Oleic acid induced a dose-dependent decrease in the levels of [32P]PIP and [32P]PIP2; a maximal decrease in [32P]PIP and [32P]PIP2 of approximately 50 and 25%, respectively, was observed within seconds after the addition of 20 microM oleic acid and persisted for at least 15 min. Oleic acid did not induce the formation of [3H]inositol phosphates in platelets prelabeled with [3H]inositol, suggesting that the decrease in [32P]PIP and [32P]PIP2 was not due to a stimulation of phospholipase C. In contrast to oleic acid, PAF induced a dose-dependent increase in the [32P]PIP level, reaching a maximum of approximately 200% 3 min after the addition of 1 nM PAF to the platelets. This increase in [32P]PIP was accompanied by platelet aggregation and secretion, and a close correlation was established between the [32P]PIP level and the degree of aggregation. Oleic acid and PAF, when added together to the platelets, interacted by affecting the level of [32P]PIP and [32P]PIP2 in an opposite way since the decrease in the level of [32P]PIP and [32P] PIP2 induced by oleic acid was partially reversed by an excess of PAF. The decrease in the levels of [32P] PIP and [32P]PIP2 caused by oleic acid was associated with an inhibition of platelet aggregation induced by PAF. Interestingly, oleic acid did not block [3H]PAF binding to platelets but inhibited the PAF-induced phosphorylation of platelet proteins of 20 kDa and 40 kDa. These results suggest that inhibition of the PAF response by oleic acid may be at one of the steps in the signal transduction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
A method for the synthesis of chiral cyclic analogues of platelet-activating factor (PAF) is reported. Treatment of suitably substituted derivatives of 2-deoxy-D-erythro-pentose with phosphorus oxychloride, followed by choline p-toluenesulfonate generates cyclic phospholipids in good yield. Further chemical modification produces other compounds including optically active gamma-butyrolactones such as 2-deoxy-5-O-hexadecyl-3-O-phosphocholyl-D-erythro-pentono-1, 4-lactone and 2-deoxy-3-O-hexadecyl-5-O-phosphocholyl-D-erythro-pentono-1, 4-lactone. All phospholipids were poor antagonists of PAF-induced aggregation of human platelets, and two analogs were poor agonists. The chemistry presented should be useful for the syntheses of other conformationally restricted analogues of PAF.  相似文献   

13.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

14.
The action of phospholipases A2 and C in the course of collagen-stimulated platelet activation and the effect of cytochalasins on the responses were studied. Stimulation of human platelets with collagen was accompanied by aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release. However, in the presence of a cyclooxygenase inhibitor or a thromboxane A2 (TXA2) receptor antagonist, collagen induced only weak arachidonic acid release and weak inositol phosphate formation. The TXA2 mimetic agonist U46619 induced all the responses except for arachidonic acid release, which was induced by synergistic action of collagen and U46619. The result that U46619 did not induce arachidonic acid release despite the activation of phospholipase C suggested that arachidonic acid was not released via phospholipase C but by phospholipase A2. These findings suggested that collagen initially induced weak activation of phospholipases A2 and C and that further activation of phospholipase C as well as Ca2+ mobilization and aggregation were induced by TXA2, whereas further activation of phospholipase A2 required the synergistic action of collagen and TXA2. Platelets pretreated with cytochalasins did not respond to collagen. Further analysis revealed that the initial activation of phospholipases A2 and C was specifically inhibited by cytochalasins, but the responses induced by U46619 or a synergistic action of collagen and U46619 were not inhibited. Therefore, we proposed that interaction of collagen receptor with actin filaments might have some roles in the collagen-induced initial activation of phospholipases.  相似文献   

15.
Antiplatelet effect of butylidenephthalide   总被引:1,自引:0,他引:1  
Butylidenephthalide inhibited, in a dose-dependent manner, the aggregation and release reaction of washed rabbit platelets induced by collagen and arachidonic acid. Butylidenephthalide also inhibited slightly the platelet aggregation induced by PAF and ADP, but not that by thrombin or ionophore A23187. Thromboxane B2 formation caused by collagen, arachidonic acid, thrombin and ionophore A23187 was in each case markedly inhibited by butylidenephthalide. Butylidenephthalide inhibited the aggregation of ADP-refractory platelets, thrombin-degranulated platelets, chymotrypsin-treated platelets and platelets in the presence of creatine phosphate/creatine phosphokinase. Its inhibition of collagen-induced aggregation was more marked at lower Ca2+ concentrations in the medium. The aggregability of platelets inhibited by butylidenephthalide could be recovered after the washing of platelets. In human platelet-rich plasma, butylidenephthalide and indomethacin prevented the secondary aggregation and blocked ATP release from platelets induced by epinephrine. Prostaglandin E2 formed by the incubation of guinea-pig lung homogenate with arachidonic acid could be inhibited by butylidenephthalide, indomethacin and aspirin. It is concluded that the antiplatelet effect of butylidenephthalide is mainly due to an inhibitory effect on cyclo-oxygenase and may be due partly to interference with calcium mobilization.  相似文献   

16.
In a previous paper we demonstrated using immunochemical techniques that propolypeptide of von Willebrand factor was present on the surface of resting platelets. In the present paper we show that polyclonal antibodies against propolypeptide of von Willebrand factor induce activation of phospholipase(s) in platelets and lead to platelet aggregation. The antibody-stimulation of platelets induced the synthesis of thromboxane A2 (TXA2). Furthermore, the aggregation was inhibited by aspirin and an antagonist of TXA2. Aspirin inhibited not only the aggregation but also the activation of arachidonic acid liberation from phospholipids, but the effect of aspirin on arachidonic acid liberation was cancelled by the combined effect of the antibodies and a TXA2 mimetic agonist, which itself did not activate arachidonic acid liberation. The antibody-induced activation of arachidonic acid liberation and the aggregation were blocked by cytochalasin B. All these results obtained with antibodies were quite similar to the results obtained with collagen.  相似文献   

17.
1. Variations in the concentration of Ca2+ [Ca2+] in the suspending medium have different effects on the responses of human and rabbit platelets to collagen. 2. When rabbit platelets are stimulated with a low concentration of collagen (0.5 micrograms/ml), aggregation, release of granule contents, and formation of thromboxane are maximal when the suspending medium contains [Ca2+] in the physiological range (0.5-2.0 mM), and very slight in a medium with no added Ca2+. 3. In contrast, human platelets respond most strongly when the suspending medium contains no added Ca2+ [( Ca2+] approx. 20 microM); this is attributable to the enhanced formation of thromboxane A2 (TXA2) upon close platelet-to-platelet contact in this medium. 4. When TXA2 formation is blocked by inhibition of cyclo-oxygenase with aspirin or indomethacin, rabbit platelet aggregation and release in response to 1.25-10 micrograms/ml collagen is also maximal at [Ca2+] of 0.5-2.0 mM and least at 20 microM; human platelets do not aggregate and the extent of release is relatively independent of [Ca2+]. 5. In 1 mM [Ca2+], use of apyrase and/or ketanserin with rabbit platelets in which TXA2 formation is blocked shows that released ADP and serotonin make large contributions to aggregation and release in response to high concentrations of collagen; human platelet aggregation is largely dependent on TXA2. 6. Use of fura-2-loaded platelets shows that the collagen-induced rise in cytosolic [Ca2+] is only slightly inhibited by aspirin or indomethacin in rabbit platelets, but almost completely inhibited in human platelets. 7. Responses of rabbit platelets to collagen are less dependent on TXA2 than those of human platelets. Released ADP and serotonin make major contributions to the responses of rabbit platelets to collagen.  相似文献   

18.
The influence of acetyl salicylic acid (ASA) derivatives with platelet-activating factor (PAF) lipid analogs on PAF-induced human platelet aggregation has been studied. It was found that the ASA amide with an ethanolamine plasmalogen PAF analog (1-0-alk-1"-enyl-2-acetyl-sn-glycero-3-phospho-(N-2"-acetoxybenzoyl)ethanolamine) and the ASA ester with a choline plasmalogen PAF analog (1-0-alk-1"-enyl-2-(2"-acetoxybenzoyl)-sn-glycero-3-phosphocholine) at concentrations of 10–7-10–6 M effectively inhibit PAF-induced aggregation of human platelets. In contrast to these compounds, the ASA amide with an alkyl PAF analog (1-0-alkyl-2-acetyl-sn-glycero-3-phospho-(N-2"-acetoxybenzoyl)ethanolamine) did not inhibit PAF-induced platelet aggregation. As possible mechanisms of action of the studied compounds, the blockade of PAF-receptor and cyclooxygenase inhibition are proposed.  相似文献   

19.
Prostaglandins and Prostaglandin-analogues were investigated for their ability to protect mice from platelet-activating factor (PAF) induced shock. 75% mortality in female NMRI mice was induced by i.v. injection of 75 micrograms/kg PAF. Nileprost and PGE1, the most potent substances, produced a dose dependent protection against PAF. Iloprost and PGI2 were less effective. PGE2, nalador, flunoprost and U 46619 were neither protective nor deleterious. The strong difference in the effectiveness between the two prostaglandins of the E-series and the poor effect of PGI2 and the PGI2 analogue is remarkable. Flunoprost and U 46619 that increased the TXB2 synthesis or release in two experimental models did not enhance the PAF mortality; TXA2 seems to be only a secondary mediator of the acute PAF-induced death.  相似文献   

20.
Thromboxane A2 (TXA2) induces platelet shape change, secretion, and aggregation. Using a novel TXA2/prostaglandin endoperoxide receptor antagonist, [1r-[1 alpha(Z),2 beta,3 beta,5 alpha]]-(+)-7-[5-[[(1,1'- biphenyl)-4-yl]methoxy]-3-hydroxy-2-(1-piperidinyl) cyclopentyl]-4-heptenoic acid hydrochloride (GR32191), we demonstrate that these responses are mediated by at least two receptor-effector systems. GR32191 non-competitively inhibited platelet aggregation to the TXA2 mimetics, (15S)-hydroxy-11,9-(epoxymethano) prostadienoic acid (U46619) and [1S-(1 alpha,2 beta(5Z),3 alpha (1E,-3S), 4 alpha)]-7-[3-(3-hydroxy-4-(p-iodophenoxy)-1-butenyl)7- oxabicyclo[2.2.1]hept-2yl]-5-heptenoic acid by binding irreversibly to a TXA2/prostaglandin endoperoxide receptor. Dissociation of [3H]GR32191 from human platelets demonstrated two specific binding sites, one which was rapidly dissociating and a site to which binding was essentially irreversible. Stimulation by U46619 of platelets incubated with GR32191 and subsequently washed to expose the reversible binding site failed to aggregate or to secrete [3H]5-hydroxy-tryptamine; formation of inositol phosphates and activation of protein kinase C were markedly suppressed. In contrast, platelet shape change and calcium stimulation remained at 90% of control. Furthermore, stimulation of the reversible binding site with U46619 induced aggregation in the presence of ADP, demonstrating its functional importance in amplifying the response to other agonists. These data suggest that TXA2 mediates platelet activation through at least two receptor-effector systems; one linked to phospholipase C activation, resulting in platelet aggregation and secretion and a second site mediating an increase in cytosolic calcium and platelet shape change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号