首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble extracts prepared from quiescent Swiss mouse 3T3 cells that had been briefly exposed to various mitogens exhibited a 2- to 3-fold elevation in phosphorylating activities toward ribosomal protein S6 and a synthetic peptide, Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala (RRLSSLRA), patterned after a phosphorylation site sequence from S6. Optimal activation of the phosphorylating activity occurred within 15-20 min of exposure of the cells to platelet-derived growth factor (10 ng/ml), epidermal growth factor (100 nM), and insulin (100 nM), and 2-5 min after 12-O-tetradecanoylphorbol-13-acetate (TPA) (100 nM) treatment. Fractionation of the cytosolic extracts from mitogen- or TPA-treated cells on Sephacryl S-300, TSK-400, and DEAE-Sephacel columns gave results suggesting that a single stimulated kinase accounted for the enhanced S6 and RRLSSLRA phosphorylating activities. The mitogen-activated kinase had an apparent Mr of about 85,000 as determined with Sephacryl S-300, but eluted with an apparent Mr of 26,000 from a TSK-400 high pressure liquid chromatography column. The S6 kinase was also stimulated in cytosols from insulin-like growth factor 1- (100 nM), vasopressin- (250 nM), prostaglandin F2 alpha- (250 nM), and 10% fetal calf serum-treated cells but not from quiescent cells exposed to beta-transforming growth factor (2 ng/ml). TPA, vasopressin and prostaglandin F2 alpha appeared to stimulate this kinase via a protein kinase C-dependent mechanism, since the responses to these hormones, but not to platelet-derived growth factor, epidermal growth factor, and insulin, were lost in protein kinase C-depleted cells.  相似文献   

2.
Insect-derived growth factor (IDGF) is the first adenosine deaminase-related growth factor (ADGF) purified from the conditioned medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina (flesh fly). Here we show the requirement of IDGF for the growth of NIH-Sape-4 cells. Growth factor activity was abolished by adsorption of IDGF from the conditioned medium of NIH-Sape-4 cells. In addition, knockdown of IDGF gene expression by RNA interference (RNAi) significantly reduced IDGF secretion from the cells following cell growth inhibition. The IDGF gene was strongly expressed in the hemocytes, and IDGF increased the viability of the larval hemocytes. These data provide evidence that IDGF is required for the growth of NIH-Sape-4 cells and possibly for hemocyte viability.  相似文献   

3.
We identified a novel gene of Drosophila melanogaster, Male-specific IDGF (MSI), encoding a transmembrane signaling molecule with exclusive expression in the testis. This molecule (MSI) contains a single transmembrane domain and has 35% amino acid identity with insect-derived growth factor (IDGF), a soluble growth factor for embryonic cells of the flesh fly, Sarcophaga peregrina. When MSI was exogenously expressed in Schneiders's line 2 cells, it was shown to be localized on the cell surface and exhibits growth factor activity, suggesting that MSI is a membrane-bound extracellular signaling molecule. Gene expression studies revealed that MSI mRNA was restricted to mature primary spermatocytes, whereas MSI was detected in the cells at the later developmental stages. Analysis using four meiotic arrest mutants, aly, can, mia, and sa suggested that MSI is involved in spermiogenesis, the final differentiation step of spermatogenesis. These results suggest that MSI is an extracellular signaling molecule participating in spermatogenesis and is a new member of the IDGF family.  相似文献   

4.
Insulin-related factor (IRF), a polypeptide secreted by the mouse teratoma-derived cell line (1246-3A), was purified 3210-fold to homogeneity from 1246-3A conditioned medium using a rapid three-step procedure including cation-exchange chromatography, immunoaffinity chromatography using a monoclonal antibody against porcine insulin coupled to an agarose gel support, and reverse phase high performance liquid chromatography. 10 micrograms of IRF was purified from 6 liters of 1246-3A conditioned medium. Pure IRF appeared as a single band with the same mobility as insulin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. IRF stimulates cell proliferation of insulin-dependent cell line 1246 and competes with 125I-insulin for binding to 1246 cells; half-maximal growth stimulation and binding competition were achieved at an IRF concentration of 6.5 ng/ml (1.3 nM) and 25 ng/ml (4 nM), respectively, comparable with those for bovine insulin. The biochemical, biological, and immunological characteristics of IRF, as well as its amino acid composition, strongly suggest that it is closely related to pancreatic insulin in structure and function.  相似文献   

5.
The ability of an inositol phospho-oligosaccharide (POS) to mimic the mitogenic effects of nerve growth factor (NGF) and insulin on the early development of the inner ear was investigated. POS (10 microM) stimulated the incorporation of [3H]thymidine into the cochleovestibular ganglion by 3.9-fold. NGF (50 ng/ml) stimulation was 4.7-fold. POS and NGF showed no additivity. Cells induced to proliferate by POS overlapped with those expressing NGF receptors. POS, like insulin, potentiated the mitogenic effect of bombesin on the otic vesicle epithelium. DNA synthesis in the presence of bombesin (100 nM) plus POS (10 microM) was increased by 6.4-fold. POS stimulation was not additive with insulin. The results suggest that POS may play a role in growth factor regulation of cell proliferation during embryonic development.  相似文献   

6.
1. Chick liver cells were incubated in unsupplemented medium (control), or medium supplanted with either 1 microgram/ml pituitary derived chicken growth hormone (GH), 50 ng/ml recombinant human insulin like growth factor-I (IGF-I), or 1 microgram growth hormone/ml and 50 ng insulin like growth factor-I/ml (GH + IGF-I). 2. GH supplementation stimulated acetate incorporation into liver cell lipid. Low density lipoprotein (LDL) lipid secretion was increased quantitatively by GH. 3. Cells incubated with IGF-I incorporated more acetate into lipid and secreted more lipid as VLDL and HDL than controls. 4. A metabolic antagonism between GH and IGF-I was evident with respect to lipogenesis. 5. Neither GH nor IGF-I altered, quantitatively, cell protein synthesis or apoprotein secretion.  相似文献   

7.
Neonatal treatment with diethylstilbestrol (DES) induces ovary-independent vaginal epithelial changes in mice. The response of vaginal epithelial cells from intact prepuberal BALB/cCrgl mice treated neonatally with 2 micrograms of DES for 5 days to growth-stimulatory and -inhibitory factors was studied using a serum-free collagen gel culture system that sustains the growth of normal vaginal epithelial cells. Cells from control and DES-exposed mice at 21 days of age showed about a 5-fold increase in number during 10 days in a serum-free medium supplemented with transferrin, bovine serum albumin fraction V, insulin, and epidermal growth factor. Epidermal growth factor and insulin stimulated dose-related proliferation of vaginal epithelial cells from both control and DES-exposed mice; however, cells from DES-exposed mice showed a reduced growth response to epidermal growth factor and an increased growth response to insulin, compared with control cells. Insulin-like growth factor I (1-100 ng/ml) tested in the absence of insulin failed to stimulate cell growth. Transforming growth factor-beta (0.05-5 ng/ml) consistently inhibited cell growth in a dose-dependent manner.  相似文献   

8.
We investigated the effect of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) on 3-O-methylglucose transport in incubated human skeletal muscle strips. Increasing physiological concentrations of IGF-II stimulated glucose transport in a dose-dependent manner. Glucose transport was maximally stimulated in the presence of 100 ng/ml (13.4 nM) of IGF-II, which corresponded to the effect obtained by 100 microU/ml (0.6 nM) of insulin. Exposure of muscle strips to IGFBP-1 (500 ng/ml) inhibited the maximal effect of IGF-II on glucose transport by 40%. Thus, it is conceivable that IGF-II and IGFBP-1 are physiological regulators of the glucose transport process in human skeletal muscle.  相似文献   

9.
Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin protect density-inhibited murine Balb/c-3T3 fibroblasts against death by distinctive mechanisms. Determination of the cell survival-enhancing activity of growth factors by cell enumeration and neutral red uptake measurement gives equivalent results. PDGF displays a steep dose-response relationship in the 1-5 ng/ml range. The other factors display shallow log-linear relationships in the following ranges: EGF: 0.2-5 ng/ml; IGF-1: 2-80 ng/ml; and insulin: 57-4,500 ng/ml. Agonists that lead to the activation of protein kinase A, including forskolin, 8-bromoadenosine 3':5'-cyclic monophosphate (Br-cAMP) and N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (db-cAMP), markedly increase both short-term (5-h) and long-term (20-h) survival of cells. 2-Isobutyl-1-methylxanthine (IBMX) markedly enhances short-term survival, but its effect decays with time. The protein kinase C agonist 12-O-tetradecanoyl phorbol-13-acetate (TPA) has a moderate protective effect at concentrations of 16-32 nM, and 64 nM TPA is highly effective. The synthetic diaclglycerols 1,2-dioctanoylglycerol (DiC8) and 1-oleoyl-2-acetylglycerol (OAG) and the calcium ionophore ionomycin show low activity. Supplementation of EGF with a protein kinase A or C agonist results in a varying additive increase in short-term (5-h) cell survival and supplementation of EGF + insulin or PDGF + EGF + insulin increases further the already high level of protection given by the growth factor combinations. Combining a protein kinase A and a protein kinase C agonist in the absence of growth factors gives an approximately additive increase in cell survival. Results obtained with kinase, RNA, and protein synthesis inhibitors suggest that: 1) activated protein kinase C catalyzes one or more phosphorylation events in quiescent Balb/c-3T3 cells that lead to gene expression with the protein product(s) mediating protection of quiescent cells against death, and 2) phosphorylation events catalyzed by protein kinase A largely serve to protect cells by a mechanism not requiring de novo RNA and protein biosynthesis.  相似文献   

10.
Yonezawa T  Haga S  Kobayashi Y  Takahashi T  Obara Y 《FEBS letters》2006,580(28-29):6635-6643
Visfatin was originally identified as a growth factor for immature B cells, and recently demonstrated to bind insulin receptor. Visfatin mRNA and protein were detected by RT-PCR and Western blot analysis in cloned bovine mammary epithelial cells, lactating bovine mammary gland and human breast cancer cell line, MCF-7. Immunocytochemical staining localized the visfatin protein in the cytosol and nucleus of both cells. Quantitative-RT-PCR analysis revealed that the expression of the visfatin mRNA was significantly elevated when treated with forskolin (500 microM), isopreterenol (1-10 microM) and dibutyric cyclic AMP (1 mM) for 24 h, and significantly reduced when treated with insulin (5-50 ng/ml) and dexsamethasone (0.5-250 nM) for 24 h. These results indicate that mammary epithelial cells express the visfatin protein and secrete them into the milk.  相似文献   

11.
Zurovcová M  Ayala FJ 《Genetics》2002,162(1):177-188
A new developmental gene family, recently identified in D. melanogaster, has been called imaginal disc growth factors (IDGF) because the proteins promote growth of cell lineages derived from imaginal discs. These are the first genes reported that encode polypeptide factors with mitotic activity in invertebrates. Characteristics such as similar arrangement of introns and exons, small size, and different cytological localization make this family an excellent candidate for evolutionary studies. We focus on the loci Idgf1 and Idgf3, two genes that possess the most distinctive features. We examine the pattern of intra- and interspecific nucleotide variation in the sequences from 20 isogenic lines of D. melanogaster and sequences from D. simulans and D. yakuba. While MK, HKA, and Tajima's tests of neutrality fail to reject a neutral model of molecular evolution, Fu and Li's test with outgroup and McDonald's test suggest that balancing selection is modulating the evolution of the Idgf1 locus. The rate of recombination between the two loci is high enough to uncouple any linkage disequilibrium arising between Idgf1 and Idgf3, despite their close physical proximity.  相似文献   

12.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

13.
A novel cell growth inhibitor, IDF45 (inhibitory diffusible factor), was recently purified to apparent homogeneity. It is a bifunctional molecule: able to bind Insulin like growth factor (IGF) and to 100% inhibit DNA synthesis stimulated by serum in fibroblasts. It was of interest to verify whether other members of the IGF-binding protein (IGFBP) family show the same bifunctional growth inhibitory properties. In this paper we show that purified IGFBP-1 derived from amniotic fluid is a cell growth inhibitor. In chick embryo fibroblasts, it inhibited DNA synthesis stimulated by serum. However the stimulation was maximally 60% inhibited and half of the inhibition was observed with 100ng/ml IGFBP-1. So the specific activity of IGFBP-1 is lower than that of IDF45. IGFBP-1 also reversibly prevented the CEF growth. In the same cells IGFBP-1 inhibited DNA synthesis stimulated by IGF-I. We demonstrated that the same protein IGFBP-1 is able to inhibit DNA synthesis stimulated by serum and by IGF-I. The possibility that IGFBP-1 is a bifunctional molecule is discussed.  相似文献   

14.
We have investigated the effects of insulin and somatomedin-C/insulinlike growth factor I(Sm-C) in purified porcine Leydig cells in vitro on gonadotrophins (hCG) receptor number, hCG responsiveness (cAMP and testosterone production), and thymidine incorporation into DNA. Leydig cells cultured in a serum-free medium containing transferrin, vitamin E, and insulin (5 micrograms/ml) maintained fairly constant both hCG receptors and hCG responsiveness. When they were cultured for 3 days in the same medium without insulin, there was a dramatic decline (more than 80%) in both hCG receptor number and hCG responsiveness. However the cAMP but not the testosterone response to forskolin was normal. Both insulin and Sm-C at nanomolar concentrations prevent the decline of both hCG receptors and hCG-induced cAMP production. This effect of both peptides was dose dependent with an ED50 of about 1 ng/ml and 5 ng/ml for SM-C and insulin, respectively. Insulin and Sm-C had no additive effect on these parameters. At nanomolar concentrations, Sm-C and insulin enhanced hCG-induced testosterone production but the effect of Sm-C was significantly higher than that of insulin. However, the effect of insulin at higher concentrations (5 micrograms/ml) was significantly higher than that of Sm-C at 50 ng/ml. In contrast, at nanomolar concentrations only Sm-C stimulated [3H]-thymidine incorporation into DNA and cell multiplication, the stimulatory effect of insulin on these parameters, was seen only at micromolar concentrations. These results indicate that both Sm-C and insulin acting through their own receptors increase Leydig cell steroidogenic responsiveness to hCG by increasing hCG receptor number and improving some step beyond cAMP formation. In contrast, the mitogenic effects of insulin are mediated only through Sm-C receptors.  相似文献   

15.
We investigated the effects of various hormones and growth factors on aromatase activity in cultured human skin fibroblasts. Several potential trophic factors were tested for their ability to modify basal aromatase activity or the response to dibutyryladenosine 3',5'-cyclic monophosphate and dexamethasone because (i) no endogenous ligand has been identified that is responsible for stimulating aromatase activity in the periphery, and (ii) dexamethasone and cAMP analogs can increase this enzyme's activity in fibroblasts. The effect of insulin and insulin-like growth factors were examined in closer detail because of the clinical association between insulin and hyperandrogenism. Pituitary hormones and hypothalamic releasing factors, such as human ACTH (10 nM), beta-endorphin (10 nM), beta-lipotropin (10 nM), alpha-MSH (10 nM), gamma 3-MSH (10 nM), ovine luteinizing hormone (10 ng/ml), ovine follicle-stimulating hormone (10 ng/ml), ovine thyroid-stimulating hormone (10 ng/ml), rat growth hormone (10 ng/ml), rat prolactin (10 ng/ml), rat corticotropin-releasing factor (10 nM), luteinizing hormone-releasing factor (10 nM), thyrotropin-releasing factor (10 nM), human growth hormone-releasing factor (10 nM), and somatostatin (10 nM), have no significant effects on aromatase activity. Porcine inhibin A (10 ng/ml) and porcine activin AB (10 ng/ml), two ovarian hormones with structural transforming homology to transforming growth factor-beta, also have no effect on aromatase activity. Although basic fibroblast growth factor (1-100 ng/ml), acidic fibroblast growth factor (1 ng/ml), epidermal growth factor (1 ng/ml), platelet-derived growth factor (1 ng/ml), tumor necrosis factor (1 ng/ml), and transforming growth factor-beta 1 (1 ng/ml) have no effect on basal aromatase activity in human skin fibroblasts, all of these growth factors inhibited the ability of dibutyryladenosine 3',5'-cyclic monophosphate to stimulate aromatase activity. In contrast, both insulin (100 pg/ml-10 ng/ml) and insulin-like growth factor-1 (1-100 ng/ml) had no effect on cAMP-stimulated aromatase but potentiated the action of dexamethasone (100 nM). Thus, there is a clear distinction between the effects of dexamethasone and cAMP on peripheral aromatase. On the basis of the results presented here, it is interesting to speculate that the hyperandrogenism that is often associated with insulin resistance may be due to a combination of growth factor-mediated inhibition of aromatase activity and the failure of peripheral tissues to respond to insulin and metabolize androgens to estrogens.  相似文献   

16.
Hepatocyte growth factor (HGF), which is a potent growth factor of adult rat hepatocytes in primary culture, also strongly stimulated DNA synthesis of rabbit renal tubular epithelial cells in secondary culture. Its mitogenic activity was dose-dependent, being detectable at 3 ng/ml and maximal at 30 ng/ml. Over 20% of the cells were shifted to the S-phase by HGF alone, judging by the labeling index. HGF had additive effects with EGF, acidic fibroblast growth factor (a-FGF), and insulin. Transforming growth factor-beta 1 (TGF-beta 1) strongly inhibited DNA synthesis of renal tubular cells stimulated by HGF. The growth of renal tubular epithelial cells was also regulated by cell density: DNA synthesis stimulated by HGF was high at lower cell density and was strongly suppressed at high cell density. These results suggest that HGF may act as a renotropic factor in compensatory renal growth or renal regeneration in vivo.  相似文献   

17.
Two polypeptides from secretory products of human hepatoma cells were isolated and characterized on the basis of their stimulation of maintenance and growth of human endothelial cells in serum-free cell culture. Both factors were purified to homogeneity by a combination of reverse-phase, ion exchange, and molecular filtration high performance liquid chromatography. One factor (endothelial cell growth factor (ECGF-2a) had Mr approximately 6,500 and pI near 6. The second (ECGF-2b) had Mr = 27,000 and a pI below 4.0. Both ECGF-2a and ECGF-2b exhibited single NH2-terminal sequences. The first 25 NH2-terminal residues of ECGF-2a and the first 49 residues of ECGF-2b were determined by gas-phase microsequencing. All clearly determined residues of ECGF-2a were identical with human pancreatic secretory trypsin inhibitor. All assignable residues of ECGF-2b were identical with urinary glycoprotein proteinase inhibitor (HI-30/EDC1). Both proteins are absent or at low levels in normal plasma and urine, but appear during acute inflammatory disease and cancer. Amino acid composition of ECGF-2a and ECGF-2b was also similar to human pancreatic secretory inhibitor and HI-30/EDC1, respectively. Both ECGF-2a and ECGF-2b inhibited bovine pancreatic trypsin (2 micrograms/ml) by 50% at 750 ng/ml. ECGF-2a and ECGF-2b stimulated endothelial cell number at a half-maximal dose of 50 ng/ml (8 nM) and 80 to 130 ng/ml (5 to 9 nM) protein, respectively. When assayed under identical conditions, no effect of either factor on human smooth muscle cells, human hepatoma cells, or human, rat, and mouse fibroblasts could be detected.  相似文献   

18.
Organismal size is determined by a tightly regulated mechanism that coordinates cell growth, cell proliferation and cell death. The Drosophila insulin receptor/Chico/Dp110 pathway regulates cell and organismal size. Here we show that genetic manipulation of the phosphoinositide-3-OH-kinase-dependent serine/threonine protein kinase Akt (protein kinase B) during development of the Drosophila imaginal disc affects cell and organ size in an autonomous manner. Ectopic expression of Akt does not affect cell-fate determination, apoptosis or proliferation rates in imaginal discs. Thus, Akt appears to stimulate intracellular pathways that specifically regulate cell and compartment size independently of cell proliferation in vivo.  相似文献   

19.
20.
Summary A serum-free clonal density growth assay was developed for the quantification of the biological activity of human recombinant insulin-like growth factor I (IGF-I). The assay measures IGF-I stimulated growth of Balb/c 3T3 cells cultured over 4 d on poly-d-lysine-coated plastic surfaces in a serum-free medium formulation composed of a 1∶1 (vol/vol) mixture of Ham's F12 and Dulbecco's modified Eagle's media, supplemented with 3.0 ng/ml bovine basic fibroblast growth factor (bFGF), 10 μg/ml human transferrin, 100 μg/ml ovalbumin, and 1.0 μM dexamethanose. Low-temperature trypsinization of serum-supplemented stock cultures combined with the use of poly-d-lysine-coated plates made it unnecessary to use serum or fibronectin to promote cell attachment and survival. Serum-free growth conditions were optimized with respect to the concentrations of the supplements. Addition of IGF-I resulted in 3.5-fold more cells than control cultures without IGF-I after 4 d. Deletion of bFGF resulted in no IGF-I stimulation of growth. The concentrations of various preparations of IGF-I required to achieve one-half maximal stimulation of cell number (ED50), ranged between 1.25 and 4.7 ng/ml. In parallel assays, IGF-I was 6.6 times more potent than human recombinant insulin-like growth factor II and 32 times more potent than insulin. When cells were seeded into medium containing IGF-I, transferrin, ovalbumin, and dexamethasone but no bFGF, growth was minimal. Dose-response addition of bFGF showed an ED50, of 0.9 ng/ml. The methods reported are useful to monitor the biological potency of recombinant and natural-source growth factors as well as providing a new means of studying the multiple growth factor requirements of Balb/c 3T3 cells in cultures. This work was supported by a contract from IMCERA Bioproducts, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号