首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
YH439 is a potential drug candidate for the treatment of various hepatic disorders. YH439 and its three metabolites have been identified in rat urine by liquid chromatography–mass spectrometry (LC–MS) and by gas chromatography (GC)–MS. Identification of YH439 and its metabolites was established by comparing their GC retention times and mass spectra with those of the synthesized authentic standards. Both electron impact- and positive chemical ionization MS have been evaluated. The metabolism study was performed in the rat using oral administration of the drug. A major metabolite (YH438) was identified as the N-dealkylation product of YH439. Other identified metabolites were caused by the loss of the methyl thiazolyl amine group (metabolite II) from YH439, the isopropyl hydrogen malonate group (metabolite IV) and the decarboxylated product (metabolite III) of metabolite II.  相似文献   

2.
1. The metabolism of flavanone in the rat was studied after oral or intraperitoneal administration of the compound. Flavone and flav-3-ene together with five other unidentified minor metabolites were excreted in the urine. 2. The formation of flavanone metabolites was not suppressed by the administration of high doses of the antibacterial compounds aureomycin and phthaloylsulphathiazole. 3. No aromatic acids that could be attributed to ring cleavage of flavanone were detected. 4. Administration of 100 or 200mg of flavanone daily per rat caused some deaths during the 7-14-day period. 5. The application of combined gas-liquid chromatography/mass spectrometry and proton nuclear-magnetic-resonance spectroscopy to the separation and identification of the flavanone metabolites is described. 6. Measurement of the two major flavanone metabolites was carried out by gas-liquid chromatography.  相似文献   

3.
The 4-hydroxy-2-alkylquinolines and their N-oxides are secondary metabolites produced by Pseudomonas aeruginosa which inhibit the growth of a number of Gram-positive organisms including Staphylococcus aureus. To facilitate the identification of these compounds in biological fluids, we have developed a rapid profiling system based on gas chromatography-electron-capture mass spectrometry of the O-bistrifluoromethylbenzoyl derivatives. Using the technique, over twenty hydroxyalkylquinolines have been identified from a culture obtained from a strain of P. aeruginosa obtained from a patient with severe bronchiectasis.  相似文献   

4.
An analytical procedure was developed for the determination of 6-mercaptopurine in plasma. Owing to the polar character and low plasma concentrations of the compound, extraction and derivatization was carried out directly from the plasma sample by extractive alkylation. Determination was made using gas chromatography—mass spectrometry with multiple-ion detection.Conditions with respect to the rate of formation and the stability of the derivative formed in the extractive alkylation step were evaluated. The selectivity of the method to azathioprine and to metabolites was thoroughly investigated. No 6-mercaptopurine was formed from azathioprine added to water or plasma and run through the method. The method enables the detection of 2 ng of 6-mercaptopurine in a 1.0-ml plasma sample. Quantitative determinations were done down to 10 ng/ml 6-mercaptopurine in plasma.  相似文献   

5.
Lorazepam and oxazepam in plasma and urine were measued by gas chromatography—mass spectrometry. Oxazepam was used as an internal standard in the assay of lorazepam and vice versa. After removal of interfering substances with n-hexane, the drugs were extracted with benzene and converted to N1,O3-bistrimethylsilyl derivatives. Glucuronide forms of the drugs were extracted after hydrolysis with β-glucuronidase. A common fragment ion at m/e 429 was used to monitor the two drugs. The sensitivity was 2 ng/ml for both drugs, which was sufficient to determine plasma and urine concentrations after therapeutic doses to humans.  相似文献   

6.
A modified method for the determination of valproylcarnitine in urine samples of patients receiving sodium valproate by gas chromatography—mass spectrometry with selected-ion monitoring is described. The chemically analogous internal standard 2-ethylpentanoylcarnitine was added to the urine samples. Valproic acid and its metabolites were removed by extraction with chloroform at pH 5.0. The samples were then applied onto a C18 Sep-Pak column. Inorganic and water soluble compounds were washed out with water. Valproylcarnitine and internal standard were eluted with methanol and were derivatized to the corresponding acyl-containing lactones by heating at 100°C for 60 min in dimethylformamide. Urinary valproylcarnitine levels of epileptic patients receiving valproate were determined according to the present method. The data obtained might be useful for diagnosis of carnitine deficiency.  相似文献   

7.
The biodegradation of alkylpolyglucosides (APGs) was studied under the conditions of the OECD Screening Test with activated sludge as an inoculum. An influence of alkyl and sugar chain length on the biodegradation rate and a central scission pathway of the biodegradation were investigated. The liquid chromatography-electrospray mass spectrometry technique was used for alkylpolyglucoside analysis and for identification and semiquantitative determination of metabolites. It was found that APGs with a longer alkyl chain were biodegraded faster than those with a shorter one. However, a longer sugar chain caused slower biodegradation of APGs. The central scission pathway of biodegradation was also confirmed.  相似文献   

8.
Advanced analytical modern technology such as coupling a gas chromatography to a mass spectrometric technique provides sufficient information to the environmental and analytical chemists to identify the presence of a variety of components of the specific volatile organic product, determine the degree of the product weathering and in some instances estimate the age of the product as well in the testing sample. In this study, we estimated BTEX in groundwater sample by using gas chromatography–mass spectrometry (GC–MS) after standardization of this technique for advancement towards purification check of water samples in the petro-polluted regions of the soil.  相似文献   

9.
Organic acids in the hearts of patients with idiopathic cardiomyopathy, obtained by biopsy, were studied using gas chromatography—mass spectrometry. The profiling of organic acids was compared among eight cases of hypertrophic cardiomyopathy, three cases of congestive cardiomyopathy, and nine cases of other heart diseases, which were regarded as controls.It was found that almost all organic acids, especially deoxyaldonic acids of 2-deoxytetronic acid, 2,3-dideoxypentonic acid, 3-deoxy-2-C-(hydroxymethyl)tetronic acid, 3-deoxyerythropentonic acid and 3-deoxy-2-C-(hydroxymethyl)erythropentonic acid, were accumulated in large amounts in the heart in congestive cardiomyopathy, while these acids were decreased in hypertrophic cardiomyopathy. It was therefore suggested that deoxyaldonic acid metabolism in the heart in congestive cardiomyopathy is quite different from that in hypertrophic cardiomyopathy.  相似文献   

10.
A GC–MS assay for stereoselective determination of tramadol and its pharmacologically active phase I metabolite O-desmethyltramadol in human urine was developed. Nefopam was used as internal standard. The method involves a simple solid phase extraction with chiral analysis by gas chromatography–electron ionization mass spectrometry using m/z 263; 58, 249; 58, and 179; 58 for the determination of concentration of tramadol, O-desmethyltramadol and internal standard, respectively. Chromatography was performed on a Rt-βDEXcst column containing alkylated beta-cyclodextrins as a chiral selector. The calibration curves were linear in the concentration range 0.1–20 μg/mL (R2  0.998). Intra-day accuracies ranged between 97.2–104.9%, 96.1–103.2%, and 97.3–102.8% at the lower, intermediate, and high concentration for all analytes, respectively. Inter-day accuracies ranged between 95.2–105.7%, 99.1–105.2%, and 96.5–101.2% at the lower, intermediate, and high concentration for all analytes, respectively. This method was successfully used to determine the concentration of enantiomers of T and ODT in a pharmacogenetic study.  相似文献   

11.
Alkylresorcinols (ARs) are phenolic lipids present at high concentrations in the outer parts of rye and wheat kernels and have been proposed as biomarkers for intake of whole grain and bran products of these cereals. AR are absorbed in the small intestine and after hepatic metabolism two major metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA), are excreted in urine either as such or as conjugates. Urine samples from nine individuals were incubated with different enzymes to assess type and extent of conjugates. In comparison with DHBA, which was mostly found in the free form, the less polar DHPPA was conjugated to a greater extent and the major conjugates were glucuronides. In this method, urine samples were hydrolyzed using β-glucuronidase from Helix pomatia and syringic acid was used as internal standard. Samples, silylated with BSTFA, were analyzed by GC–MS utilizing a BP-5 fused silica capillary column and single ion monitoring of molecular ions (m/z 370 [DHBA], m/z 398 [DHPPA]). Recoveries of DHBA and DHPPA were estimated to be 94% and 93%, respectively. The average intra-assay/inter-assay coefficients of variation were 4.9/5.7% for DHBA and 7.6/9.3% for DHPPA.  相似文献   

12.
Urinary metabolic pattern after the therapeutic peroral dose of dihydrocodeine tartrate to six human volunteers has been explored. Using the GC–MS analytical method, we have found that the major part of the dose administered is eliminated via urine within the first 24 h. However, the analytical monitoring of dihydrocodeine and its metabolites in urine was still possible 72 h after the dose was administered. The dihydrocodeine equivalent amounts excreted in urine in 72 h ranged between 32 and 108% of the dose, on average 62% in all individuals. The major metabolite excreted into urine was a 6-conjugate of dihydrocodeine, then in a lesser amount a 6-conjugate of nordihydrocodeine (both conjugated to approximately 65%). The O-demethylated metabolite dihydromorphine was of a minor amount and was 3,6-conjugated in 85%. Traces of nordihydromorphine and hydrocodone were confirmed as other metabolites of dihydrocodeine in our study. This information can be useful in interpretation of toxicological findings in forensic practice.  相似文献   

13.
The application of Gas Chromatography (GC)–Atmospheric Pressure Chemical Ionization (APCI)–Time-of-Flight Mass Spectrometry (TOF-MS) is presented for sterol analysis in human plasma. A commercial APCI interface was modified to ensure a well-defined humidity which is essential for controlled ionization. In the first step, optimization regarding flow rates of auxiliary gases was performed by using a mixture of model analytes. Secondly, the qualitative and quantitative analysis of sterols including oxysterols, cholesterol precursors, and plant sterols as trimethylsilyl-derivatives was successfully carried out. The characteristics of APCI together with the very good mass accuracy of TOF-MS data enable the reliable identification of relevant sterols in complex matrices. Linear calibration lines and plausible results for healthy volunteers and patients could be obtained whereas all mass signals were extracted with an extraction width of 20 ppm from the full mass data set. One advantage of high mass accuracy can be seen in the fact that from one recorded run any search for m/z can be performed.  相似文献   

14.
Gas chromatography–mass spectrometry (GC–MS) was compared with gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS) for measurements of cholesterol 13C enrichment after infusion of labeled precursor ([13C1,2]acetate). Paired results were significantly correlated, although GC–MS was less accurate than GC–C–IRMS for higher enrichments. Nevertheless, only GC–MS was able to provide information on isotopologue distribution, bringing new insights to lipid metabolism. Therefore, we assessed the isotopologue distribution of cholesterol in humans and dogs known to present contrasted cholesterol metabolic pathways. The labeled tracer incorporation was different in both species, highlighting the subsidiarity of GC–MS and GC–C–IRMS to analyze in vivo stable isotope studies.  相似文献   

15.
B. Dauphin  G. Teller  B. Durand 《Planta》1979,144(2):113-119
This paper describes the identification and quantitative analysis of cytokinins from natural sources (150–500 g fresh weight) at the submicrogram level. It summarizes an improved purification procedure with high resolution power that permits the detection of Trimethylsilylderivatives by gas chromatography-mass spectrometry. A comparison of the intensity of a characteristic ion in the mass spectrum of suitable standard (5 g) and theintensity of the same ion in the mass spectrum of the extraction product permitted precise quantitative analysis. The method has been used to determine zeatin, trans- and cis-ribosylzeatin, and 2-isopentenyladenosine concentrations in extracts from female and monoecious Mercurialis ambigua apices. It has been proved that differences appear in the endogenous cytokinin pools of monoecious and female individuals.Abbreviations IPA isopentenyladenosine - Z Zeatin - RZ Ribosylzeatin - GC gas chromatography - TMS Trimethylsilyl  相似文献   

16.
A simple, reliable and sensitive gas chromatographic–mass spectrometric method was devised to determine the level of mannitol in various human brain tissues obtained at autopsy. Mannitol was extracted with 10% trichloroacetic acid solution which effectively precipitated brain tissues. The supernatant was washed with tert.-butyl methyl ether to remove other organic compounds and to neutralize the aqueous solution. Mannitol was then derivatized with 1-butaneboronic acid and subjected to GC–MS. Erythritol was used as an internal standard. For quantitation, selected ion monitoring with m/z 127 and 253 for mannitol and m/z 127 for internal standard were used. Calibration curves were linear in concentration range from 0.2 to 20 μg/0.1 g and correlation coefficients exceeded 0.99. The lower detection limit of mannitol in distilled water was 1 ng/0.1 g. Mannitol was detected in control brain tissues, as a biological compound, at a level of 50 ng/0.1 g. The precision of this method was examined with use of two different concentrations, 2 and 20 μg/0.1 g, and the relative standard deviation ranged from 0.8 to 8.3%. We used this method to determine mannitol in brain tissues from an autopsied individual who had been clinically diagnosed as being brain dead. Cardiac arrest occurred 4 days later.  相似文献   

17.
Methods of isotope-dilution gas chromatography–mass spectrometry (GC–MS) are described for the determination of styrene and styrene-7,8-oxide (SO) in blood. Styrene and SO were directly measured in pentane extracts of blood from 35 reinforced plastics workers exposed to 4.7–97 ppm styrene. Using positive ion chemical ionization, styrene could be detected at levels greater than 2.5 μg/l blood and SO at levels greater than 0.05 μg/l blood. An alternative method for measurement of SO employed reaction with valine followed by derivatization with pentafluorophenyl isothiocyanate and analysis via negative ion chemical ionization GC–MS–MS (SO detection limit=0.025 μg/l blood). The detection limits for SO by these two methods were 10–20-fold lower than gas chromatographic assays reported earlier, based upon either electron impact MS or flame ionization detection. Excellent agreement between the two SO methods was observed for standard calibration curves while moderate to good agreement was observed among selected reinforced plastics workers (n=10). Levels of styrene in blood were found to be proportional to the corresponding air exposures to styrene, in line with other published relationships. Although levels of SO in blood, measured by the direct method, were significantly correlated with air levels of either styrene or SO among the reinforced plastics workers, blood concentrations were much lower than previously reported at a given exposure to styrene. The two assays for SO in blood appear to be unbiased and to have sufficient sensitivity and specificity for applications involving workers exposed to styrene and SO during the manufacture of reinforced plastics.  相似文献   

18.
《Free radical research》2013,47(8):651-656
Abstract

Malondialdehyde (MDA) is considered to be a biomarker for enzymatic degradation and lipid peroxidation of polyunsaturated fatty acids. Usually, MDA determination from different biological materials is performed by reaction with thiobarbituric acid (TBA) followed by high-performance liquid chromatography (HPLC) analysis and fluorometric detection. As this method lacks specificity and sensitivity, we developed a gas chromatography–mass spectrometry (GC–MS) method based on derivatization of MDA with 2,4-dinitrophenylhydrazine. Representative ions in negative ion chemical ionization (NICI) mode were recorded at m/z 204 for MDA and at m/z 206 for the deuterated analogon (MDA-d2) as internal standard. This stable and precise GC–MS method showed good linearity (r2 = 0.999) and higher specificity and sensitivity than the HPLC method and was validated for both total MDA (t-MDA) and free MDA (f-MDA). Within-day precisions were 1.8–5.4%, between-day precisions were 4.8–9.2%; and accuracies were between 99% and 101% for the whole calibration range (0.156–5.0 μmol/L for t-MDA and 0.039–0.625 μmol/L for f-MDA). Although comparison of t-MDA levels from GC–MS and HPLC results using Passing–Bablok regression analysis as well as Bland–Altman plot showed a correlation of the data, a tendency to increased results for the HPLC values was detectable, due to possible formation of unspecific products of the TBA reaction.  相似文献   

19.
Haloacetic acids (HAAs) are water disinfection byproducts (DBPs) formed by the reaction of chlorine oxidizing compounds with natural organic matter in water containing bromine. HAAs are second to trihalomethanes as the most commonly detected DBPs in surface drinking water and swimming pools. After oral exposure (drinking, showering, bathing and swimming), HAAs are rapidly absorbed from the gastrointestinal tract and excreted in urine. Typical methods used to determine these compounds in urine (mainly from rodents) only deal with one or two HAAs and their sensitivity is inadequate to determine HAA levels in human urine, even those manual sample preparation protocols which are complex, costly, and neither handy nor amenable to automation. In the present communication, we report on a sensitive and straightforward method to determine the nine HAAs in human urine using static headspace (HS) coupled with GC–MS. Important parameters controlling derivatisation and HS extraction were optimised to obtain the highest sensitivity: 120 μl of dimethylsulphate and 100 μl of tetrabutylammonium hydrogen sulphate (derivatisation regents) were selected, along with an excess of Na2SO4 (6 g per 12 ml of urine), an oven temperature of 70 °C and an equilibration time of 20 min. The method developed renders an efficient tool for the precise and sensitive determination of the nine HAAs in human urine (RSDs ranging from 6 to 11%, whereas LODs ranged from 0.01 to 0.1 μg/l). The method was applied in the determination of HAAs in urine from swimmers in an indoor swimming pool, as well as in that of non-swimmers. HAAs were not detected in the urine samples from non-swimmers and those of volunteers before their swims; therefore, the concentrations found after exposure were directly related to the swimming activity. The amounts of MCAA, DCAA and TCAA excreted from all swimmers are related to the highest levels in the swimming pool water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号