首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
1. Spermine and spermidine were the main polyamines detectable in Bacillus stearothermophilus. 2. When grown at 65 degrees B. stearothermophilus contained lower concentrations of polyamines per mg. of RNA than when grown at 45 degrees or at 55 degrees . 3. Ribosomes isolated from B. stearothermophilus in 0.01m-tris-hydrochloric acid buffer (pH7.4)-0.01m-magnesium chloride contained sufficient polyamines to neutralize between 4% and 9% of their RNA phosphorus. 4. Removal of polyamines from the ribosomes by dialysis against m-potassium chloride did not appreciably alter the hypochromicity or thermal denaturation profiles of the ribosomes when measured in 0.01m-tris-hydrochloric acid buffer (pH7.4)-0.01m-magnesium chloride, though it did cause a loss of ribosome particles sedimenting at greater than 78s. 5. When ribosomes were dialysed against acridine orange solutions acridine orange bound to the ribosomes and did not displace spermine, but when a mixture of ribosomal RNA and spermine was dialysed against acridine orange the acridine orange displaced the spermine. It is concluded that polyamines in the ribosomes are less accessible for displacement by acridine orange than when polyamines are bound to ribosomal RNA.  相似文献   

2.
1. When the binding of ethidium bromide to rRNA is measured both in the presence and in the absence of spermine, by spectrophotometric titrations, by gel filtration, or by the changes in fluorescence intensity, spermine competes with ethidium bromide for sites on the rRNA; under the conditions used in these experiments ethidium bromide is bound to the double-stranded regions of rRNA. 2. When an excess of ethidium bromide is added to ribosomes from Bacillus stearothermophilus approx. 80% of the endogenous spermine is displaced from the ribosomes. 3. [(14)C]Spermine is fixed to ribosomes by either formaldehyde or 1,5-difluoro-2,4-dinitrobenzene. Most of the [(14)C]spermine, fixed to ribosomes by 1,5-difluoro-2,4-dinitrobenzene, attaches to the ribosomal protein. 4. It is concluded that most of the endogenous spermine is bound to the double-stranded RNA in ribosomes, and that some of these double-stranded regions to which spermine is attached also have ribosomal proteins bound to them.  相似文献   

3.
Ribonucleic acid and ribosomes of Bacillus stearothermophilus   总被引:16,自引:7,他引:9  
Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Ribonucleic acid and ribosomes of Bacillus stearothermophilus. J. Bacteriol. 91:332-339. 1966.-The ability of some thermophilic bacteria to grow at temperatures as high as 76 C emphasizes the remarkable thermal stability of their crucial macromolecules. An investigation of the ribonucleic acid (RNA) and ribosomes of Bacillus stearothermophilus was conducted. Washed log-phase cells were disrupted either by sonic treatment or by alumina grinding in 10(-2)m MgCl(2)-10(-2)m tris-(hydroxymethyl)aminomethane buffer, pH 7.4 (TM buffer). Ultracentrifugal analysis revealed peaks at 72.5S, 101S, and 135S, with the 101S peak being the most prominent. By lowering the Mg(++) concentration to 10(-3)m, the ribosome preparation was dissociated to give 40S, 31S, and 54S peaks. These in turn were reassociated in the presence of 10(-2)m Mg(++) to give the larger 73S and 135S particles. When heated in TM buffer, Escherichia coli ribosomes began a gradual dissociation at 58 C, and at 70 C underwent a large hyperchromic shift with a T(m) at 72.8 C. In contrast, B. stearothermophilus ribosomes did not show a hyperchromic shift below 70 C; they had a T(m) of 77.9 C. The thermal denaturation curves of the 4S, 16S, and 23S RNA from both organisms were virtually identical. The gross amino acid composition of B. stearothermophilus ribosomes showed no marked differences from that reported for E. coli ribosomes. These data suggest that the unusual thermal stability of B. stearothermophilus ribosomes may reflect either an unusual packing arrangement of the protein to the RNA or differences in the primary structure of the ribosomal proteins.  相似文献   

4.
The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B. stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5.  相似文献   

5.
Poly(4-thiouridylic acid) [poly(s4U)] synthesized by polymerization of 4-thiouridine 5'-diphosphate with Escherichia coli polynucleotide phosphorylase (EC 2.7.7.8) acts as messenger RNA in vitro in a protein-synthesizing system from E. coli. It stimulates binding of Phe-tRNA to ribosomes both in the presence of EF-Tu-Ts at 5 mM Mg2+ concentration and nonenzymatically at 20 mM Mg2+ concentration. It codes for the synthesis of polyphenylalanine. Poly(s4U) competes with poly(U) for binding to E. coli ribosomes. Light of 330 nm photoactivates poly(s4U) thus making it a useful photoaffinity label for the ribosomal mRNA binding site. Upon irradiation of 70-S ribosomal complexes, photoreaction occurs with ribosomal proteins as well as 16-S RNA. Ribosomes pre-incubated with R17 RNA are protected against the photoaffinity reaction. The labelling of 16-S RNA can be reduced by treatment of ribosomes with colicin E3.  相似文献   

6.
Comparative studies of free ribosomal RNA and ribosomes were made with two probes, Mg++ ions and ethidium bromide, which interact with RNA in different ways. Mg++. E. coli 16 S rRNA and 30 S ribosomes were equilibrated with four different buffers. Equilibration required several days at 4 degrees and several hours at 37 degrees. In all buffers ribosomes bound more Mg than free rRNA, the difference sometimes reaching 20--30%. Ribosomes were more resistant than free rRNA to heat denaturation and their denaturation was more highly cooperative. Ribosomes that bound more Mg++ had higher denaturation temperatures. Ethidium bromide. Fluorescence enhancement studies of ethidium intercalation showed the free 16 S rRNA to have 50--80 binding sites per molecule. A large fraction of these sites were present and accessible in the ribosome, but their ethidium-binding constants were reduced by an order of magnitude. In addition, free rRNA contained a small number of very strong binding sites that were virtually absent in the ribosomes.  相似文献   

7.
Binding of the yeast Tyr-tRNA and Phe-tRNA to the A site, and the binding of their acetyl derivatives to the P site of poly(U11,A)-programmed Escherichia coli ribosomes was studied. Spermine stimulated the rate of binding of both tRNAs at least threefold, enabling more than 90% final saturation of both ribosomal binding sites. The effect is observed when the tRNAs, but not ribosomes or poly(U11,A), are preincubated with polyamine. Regardless of the binding site, optimal saturation was reached at spermine/tRNA molar ratios of 3 for tRNA(Phe) and 5 for tRNA(Tyr). The same low spermine/tRNA ratios were previously reported to stabilize the conformation of these tRNAs in solution. On the other hand, the messenger-free, EF-Tu- and EF-G-dependent polymerization of lysine from E. coli Lys-tRNA is drastically reduced, while the poly(A)-directed polymerization is stimulated by spermine through a wide range of Mg2+ concentrations. Misreading of UUU codons as isoleucine, assayed by the A-site binding of E. coli Ile-tRNA, is also inhibited by spermine. All these results demonstrate that spermine increases the efficiency and accuracy of a series of macromolecular interactions leading to the correct incorporation of an amino acid into protein, at the same time preventing some unspecific or erroneous interactions. From the analogy with its known structural effects, it can be inferred that spermine does so by conferring on the tRNA a specific biologically functional conformation.  相似文献   

8.
1. The polyamines, putrescine, spermidine and spermine occur in free or acetylated form in a wide variety of living organisms. Putrescine is biosynthesized from ornithine or arginine; spermidine and spermine from methionine and either ornithine or arginine. 2. It is difficult to determine the intracellular distribution of polyamines since they are all very soluble in water and they are readily redistributed when cells are disrupted. Evidence suggests that a substantial proportion of the intracellular polyamines is attached to the ribosomes and that spermidine is not concentrated in the nucleus. 3. Polyamines bind strongly to both DNA and RNA. The strength of binding is:spermine > spermidine > putrescine. Polyamines stabilize the double helix of DNA, probably by forming a bridge across the narrow groove, by involving electrostatic bonding with the phosphate group. However, they do not appear to alter the overall conformation of DNA. Spermine enables single-stranded RNA to fold into a more compact configuration which is less susceptible to attack by ribonuclease. 4. Spermine and spermidine are able to stimulate the DNA primed RNA polymerase. They facilitate the removal of RNA from the DNA-RNA-enzyme complex. 5. Polyamines promote the association of ribosomal subunits and also the binding of amino acyl transfer RNA to ribosomes. They cause increased coding ambiguities in the process of translation in certain bacterial systems. 6. There is a close correlation between the intracellular concentration of spermidine and the rate of RNA synthesis both in rat liver and in Escherichia coli. Conditions which affect the rate of RNA synthesis also affect the concentration of free intracellular spermidine. 7. Bacteria usually contain putrescine and spermidine, whereas animal tissues contain spermine and spermidine. Spermidine probably fulfils the same role in both bacteria and animal tissues, but the presence of spermine, which is common to eucaryotes, is possibly associated with their more complex mechanisms for regulating RNA and protein synthesis.  相似文献   

9.
Number of tRNA binding sites on 80 S ribosomes and their subunits   总被引:1,自引:0,他引:1  
The ability of rabbit liver ribosomes and their subunits to form complexes with different forms of tRNAPhe (aminoacyl-, peptidyl- and deacylated) was studied using the nitrocellulose membrane filtration technique. The 80 S ribosomes were shown to have two binding sites for aminoacyl- or peptidyl-tRNA and three binding sites for deacylated tRNA. The number of tRNA binding sites on 80 S ribosomes or 40 S subunits is constant at different Mg2+ concentrations (5-20 mM). Double reciprocal or Scatchard plot analysis indicates that the binding of Ac-Phe-tRNAPhe to the ribosomal sites is a cooperative process. The third site on the 80 S ribosome is formed by its 60 S subunit, which was shown to have one codon-independent binding site specific for deacylated tRNA.  相似文献   

10.
A technique that permitted the reversible dissociation of rat liver ribosomes was used to study the difference in protein-synthetic activity between liver ribosomes of normal and hypophysectomized rats. Ribosomal subunits of sedimentation coefficients 38S and 58S were produced from ferritin-free ribosomes by treatment with 0.8m-KCl at 30 degrees C. These recombined to give 76S monomers, which were as active as untreated ribosomes in incorporating phenylalanine in the presence of poly(U). Subunits from normal and hypophysectomized rats were recombined in all possible combinations and the ability of the hybrid ribosomes to catalyse polyphenylalanine synthesis was measured. The results show that the defect in ribosomes of hypophysectomized rats lies only in the small ribosomal subunit. The 40S but not the 60S subunit of rat liver ribosomes bound poly(U). The only requirement for the reaction was Mg(2+), the optimum concentration of which was 5mm. No apparent difference was seen between the poly(U)-binding abilities of 40S ribosomal subunits from normal or hypophysectomized rats. Phenylalanyl-tRNA was bound by 40S ribosomal subunits in the presence of poly(U) by either enzymic or non-enzymic reactions. Non-enzymic binding required a Mg(2+) concentration in excess of 5mm and increased linearly with increasing Mg(2+) concentrations up to 20mm. At a Mg(2+) concentration of 5mm, GTP and either a 40-70%-saturated-(NH(4))(2)SO(4) fraction of pH5.2 supernatant or partially purified aminotransferase I was necessary for binding of aminoacyl-tRNA. Hypophysectomy of rats resulted in a decreased binding of aminoacyl-tRNA by 40S ribosomal subunits.  相似文献   

11.
The binding of Mg2+, spermine, and spermidine to wheat germ ribosomes was quantitated following equilibrium dialysis. The Mg2+ binding data demonstrate that Mg2+ and K+ compete for binding to the ribosomes. Mg2+ binding saturates at approximately 0.56 positive charges per phosphate (+/P). The Mg2+, spermine and spermidine binding data indicate that either polyamine replaces Mg2+ upon binding to the ribosomes. Mg2+ and polyamine binding combined saturates at approximately 0.29 +/P under the conditions reported. When a critical number of Mg2+ ions are replaced by either polyamine, the activity of the ribosomes falls dramatically. Ribosomal subunit association increases with the degree of phosphate charge neutralization due to the binding of Mg2+. Total charge neutralization during subunit association by Mg2+ and polyamine binding combined, is much less than that achieved by Mg2+ alone.  相似文献   

12.
Interaction between polyamines and nucleic acids or phospholipids   总被引:10,自引:0,他引:10  
The binding of polyamines to DNA, RNA, and phospholipids has been studied by gel filtration and sucrose density gradient centrifugation. Spermine was found to bind more to a GC-rich DNA. Among RNAs containing double-stranded region [poly(AU), poly(GC), and ribosomal RNA], the binding of spermine was nearly equal. Among the single-stranded RNAs, the binding of spermine was in the order poly(U) > poly(C) > poly(A). An increase in K+ or Mg2+ concentration resulted in a great decrease in spermine binding to DNA and in a slight decrease in spermine binding to RNA. Therefore, in the presence of more than 2 mm Mg2+ and 100 mm K+, the binding of spermine to RNA was greater than that to DNA. No significant difference in spermine binding was observed between 16 S ribosomal RNA and 30 S ribosomal subunits, suggesting that ribosomal proteins did not affect significantly the binding of spermine to ribosomal RNA. The binding of spermine to microsomes was dependent on phospholipids. The binding strength was in the order phosphatidylinositol > phosphatidylethanolamine > phosphatidylcholine.  相似文献   

13.
Day, L. E. (Chas. Pfizer & Co., Inc., Groton, Conn.). Tetracycline inhibition of cell-free protein synthesis. I. Binding of tetracycline to components of the system. J. Bacteriol. 91:1917-1923. 1966.-Tetracycline, an inhibitor of cell-free protein synthesis, effected the dissociation of Escherichia coli 100S ribosomes to 70S particles in vivo and in vitro, but was not observed to mediate the further degradation of these particles. The antibiotic was bound by both 50S (Svedberg) and 30S subunits of 70S ribosomes and also by E. coli soluble RNA (sRNA), polyuridylic acid (poly U), and polyadenylic acid (poly A). The binding to ribosomal subunits was higher at 5 x 10(-4)m Mg(++) than at 10(-2)m Mg(++). The binding to polynucleotide chains was highest when Mg(++) was not added to the reaction mixture.  相似文献   

14.
In an attempt to understand the role of magnesium ion in ribosome assembly in vitro, the hydrodynamic shape, conformation, and thermal stability of ribosomal 16 S RNA were studied systematically as a function of Mg2+ concentration by sedimentation velocity, intrinsic viscosity, circular dichroism, and difference ultraviolet absorption spectroscopy. These results were then compared with the corresponding parameters obtained for 16 S RNA under the optimal conditions of reconstitution, i.e., at 37 degrees C, 20 mM Mg2+, an ionic strength equal to 0.37, and pH 7.8 [S. H. Allen, and K.-P. Wong (1978) J. Biol. Chem. 253, 8759-8766]. When the 360 mM KCl required for reconstitution of 30 S ribosomes is added to the medium, only subtle conformational changes are observed, consistent with the destabilization of the conformation, thus making the RNA molecule more "open" and accessible to protein binding. However, when the concentration of Mg2+ is lowered from 20 to 1 mM, the hydrodynamic parameters indicate that the 16 S RNA is partially unfolded, while thermal denaturation studies suggest that the amount of base-stacking and base-pairing is not concomitantly altered. Further removal of the Mg2+ by dialysis against a pH 7.8 buffer containing no Mg2+ results in a drastic decrease of secondary structure and indicates that the Mg2+ is required for maintenance of the pairing, stacking, and stability of the nucleotide bases, in addition to the long range interactions which result in a compact structure. The results suggest that the 20 mM Mg2+ is required for the 16 S RNA molecules to assume the proper secondary and tertiary structure containing the protein-binding sites, while the high K+ concentration (360 mM KCl) is needed for "loosening up" the RNA, making the protein binding sites more accessible to the ribosomal proteins for molecular recognition and binding as well as for the conformational changes that occur during ribosome assembly.  相似文献   

15.
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.  相似文献   

16.
Exposure of cells of Escherichia coli to mitomycin C (5 mug/ml) resulted in a marked change in the sedimentation profiles of the cell-free extracts, indicating a specific decomposition of ribosomal particles. When the extracts were prepared in the presence of 0.01 m Mg(++) and analyzed by sucrose density gradient centrifugations, the 100S fraction disappeared rapidly from the treated cells. The 70S ribosomes were also degraded, but more slowly, with a concomitant accumulation of a fraction having a sedimentation coefficient of about 50S. However, decomposition of the 70S ribosomes was preceded by an almost complete loss of the 50S ribosomal subunits, as revealed by sedimentation analyses in the presence of 10(-4)m Mg(++). Synthesis of the ribosomes in the treated cells was also suppressed, being demonstrated by a lower incorporation of uracil-2-(14)C into the ribosomal fractions. However, the change in the ribosomal profile in the treated cells apparently resulted from the decomposition of pre-existing ribosomes, rather than from the inhibition of the net synthesis of ribosomes. Sedimentation analyses and chromatography of the nucleic acids extracted from the treated cells indicated extensive but delayed degradation of the ribosomal ribonucleic acid (RNA), but not of the soluble RNA or deoxyribonucleic acid fractions. Altered structure of the ribosomes in the treated cells was also indicated by their lower melting temperature, broadened thermal profile, higher electrophoretic mobility, and extreme sensitivity to ribonuclease treatment, compared with normal ribosomes. The synthesis of messenger RNA was inhibited progressively with time in the treated cells.  相似文献   

17.
Spermine and spermidine added to a Saccharomyces cerevisiae cell-free protein synthesizing system increased phenylalanine polymerization reaction several-fold at suboptimal concentration of Mg2+ and approximately two-fold at optimal amounts of Mg2+. The addition of polyamines greatly stimulated the enzymatic and nonenzymatic binding of phenylalanyl-tRNA and N-acetylphenylalanyl-tRNA to ribosomes. The binding of the acetylated derivative was higher than phenylalanyl-tRNA, however, as it was shown the former was bound exclusively to the A site of the ribosome. Contrary to the binding process, the puromycin reaction was not stimulated by spermine added at a concentration which enhanced the polyphenylalanine synthesis. These results indicate that polyamines have not only a sparing effect on the Mg2+ requirement for yeast protein synthesis in vitro and suggest that one of the possible sites of polyamines action might be the binding of aminoacyl-tRNA to ribosomes.  相似文献   

18.
After heating at 65 C, ribosomes isolated from Bacillus stearothermophilus were strikingly more heat-stable than comparable preparations from Escherichia coli when tested for ability to support polyuridylic acid-directed phenylalanine incorporation at 37 C. The stability of ribosomes was also determined by measurements of hyperchromicity at 259 mmu while heating them from 25 to 90 C. In standard buffer containing 0.01 m Mg(++), the T(m) (temperature at the midpoint of total hyperchromicity) of E. coli and B. stearothermophilus ribosomes was 71 and 81 C, respectively. In a magnesium-free buffer, the T(m) of E. coli and B. stearothermophilus ribosomes was 44 and 64 C, respectively. Putrescine (0.01 m) was more effective in stabilizing ribosomes from B. stearothermophilus than those from E. coli. Spermidine (0.001 m), on the other hand, was more effective in stabilizing ribosomes from E. coli than those from B. stearothermophilus. Melting curves of total ribosomal ribonucleic acid (rRNA) from E. coli and B. stearothermophilus revealed T(m) values of 50 and 60 C, respectively. Putrescine stabilized thermophile rRNA, but had no effect on E. coli rRNA. Sucrose density gradients demonstrated that thermophile 23S ribonucleic acid was degraded during storage at -20 C; the 23S component from E. coli was stable under these conditions. The results are discussed in terms of the mechanism of ribosome heat stability and the role of the ribosome in governing the temperature limits for bacterial growth.  相似文献   

19.
Photoaffinity labeling of 70S ribosomes from B. stearothermophilus by [3H]-1-(4-azidophenyl)-2-(5′-guanyl) pyrophosphate (APh-GDP) in the presence of fusidate and elongation factor G (EF-G) results in incorporation of tritium in the 50S proteins BL2, BL10 and BL22. Irradiation of the corresponding 5S RNA-protein complex in the presence of the GDP derivative gives only incorporation of tritium in BL10 and BL22. The proteins BL10 and BL22 comigrate in two dimensional gel electrophoresis with the 50S ribosomal proteins EL11 and EL18 from E. coli. The result suggests that the region at or near the guanine nucleotide binding site of the ribosome and the complex are the same. Since previous work has shown that the latter two are labeled upon irradiation of the ribosome with [3H]-APh-GDP, it is concluded that ribosomes from E. coli and B. stearothermophilus have structurally related GTPase sites.  相似文献   

20.
Ribosomes are multifunctional RNP complexes whose catalytic activities absolutely depend on divalent metal ions. It is assumed that structurally and functionally important metal ions are coordinated to highly ordered RNA structures that form metal ion binding pockets. One potent tool to identify the structural surroundings of high-affinity metal ion binding pockets is metal ion-induced cleavage of RNA. Exposure of ribosomes to divalent metal ions, such as Pb2+, Mg2+, Mn2+, and Ca2+, resulted in site-specific cleavage of rRNAs. Sites of strand scission catalyzed by different cations accumulate at distinct positions, indicating the existence of general metal ion binding centers in the highly folded rRNAs in close proximity to the cleavage sites. Two of the most efficient cleavage sites are located in the 5' domain of both 23S and 16S rRNA, regions that are known to self-fold even in the absence of ribosomal proteins. Some of the efficient cleavage sites were mapped to the peptidyl transferase center located in the large ribosomal subunit. Furthermore, one of these cleavages was clearly diminished upon AcPhe-tRNA binding to the P site, but was not affected by uncharged tRNA. This provides evidence for a close physical proximity of a metal ion to the amino acid moiety of charged tRNAs. Interestingly, comparison of the metal ion cleavage pattern of eubacterial 70S with that of human 80S ribosomes showed that certain cleavage sites are evolutionarily highly conserved, thus demonstrating an identical location of a nearby metal ion. This suggests that cations, bound to evolutionarily constrained binding sites, are reasonable candidates for being of structural or functional importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号