首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treatment of quiescent Swiss 3T3 cells with the mitogenic peptides bombesin, vasopressin, endothelin/vasoactive intestinal contractor (VIC), and bradykinin strikingly increased the initial rate of tyrosine phosphorylation measured in anti-phosphotyrosine immunoprecipitates of a major band of Mr 115,000 (p115) and two minor components of Mr 90,000 and 75,000. Neuropeptides increased the labeling of p115 within seconds and with great potency; half-maximum concentrations were 0.1, 0.2 and 0.3 nM for bombesin, vasopressin, and VIC, respectively. Immunoblotting and peptide mapping showed that the p115 band phosphorylated in anti-phosphotyrosine immunoprecipitates is identical to a major Mr 115,000 substrate for neuropeptide-stimulated tyrosine phosphorylation in intact Swiss 3T3 cells. Furthermore, bombesin, vasopressin, and VIC markedly increased the rate of phosphorylation of Raytide, a broad specificity tyrosine kinase peptide substrate, by decreasing (8 +/- 1.3-fold) the apparent Km of the kinase for the substrate. Phorbol 12,13-dibutyrate and the Ca2+ ionophore A23187 had a weaker effect on tyrosine protein kinase activity in immune complexes compared with bombesin. Furthermore, down-regulation of protein kinase C blocked the small effect of phorbol esters but did not impair bombesin-stimulated tyrosine kinase activity. These results provide direct evidence for neuropeptide activation of a tyrosine kinase in cell-free preparations and identify a novel event in the action of this class of growth factors in Swiss 3T3 cells.  相似文献   

3.
4.
5.
Stimulation of quiescent Swiss 3T3 cells with bombesin induces a rapid increase in the formation of complexes between focal adhesion kinase (FAK) and Src family members, which can be extracted with a buffer containing Triton, deoxycholate, and SDS but not with a buffer containing Triton alone. An increase in complex formation between FAK and Src in response to bombesin could be detected within 1 min, reached a maximum after 10 min, and declined toward base-line levels after 60 min of bombesin treatment. Bradykinin, endothelin, and lysophosphatidic acid also stimulated FAK-Src complex formation. Bombesin stimulated FAK/Src association through a Ca(2+) and phosphatidylinositol 3'-kinase-independent pathway that requires the integrity of the actin filament network and is partly dependent on functional protein kinase C. Treatment with the selective Src kinase inhibitor PP-2 inhibited both FAK activation and phosphorylation of FAK at Tyr(577) induced by bombesin in intact cells. Platelet-derived growth factor at low concentrations (1-10 ng/ml) also induced FAK-Src complex formation via a pathway that depended on the integrity of the actin cytoskeleton and phosphatidylinositol 3'-kinase. Thus, G protein-coupled receptor agonists and platelet-derived growth factor promote complex formation between endogenous FAK and Src in attached cells through different signal transduction pathways.  相似文献   

6.
The synthetic peptide [D-Arg1,D-Pro2,D-Trp7,9,Leu1]substance P inhibits the stimulation of DNA synthesis induced in Swiss 3T3 cells by bombesin or vasopressin, but not that induced by a wide range of other growth factors and mitogens. The stimulation induced by 10 pM-3 nM-bombesin is inhibited by 1-30 microM-antagonist in a manner consistent with competition at the bombesin receptor. The inhibition by the antagonist of the stimulation induced by vasopressin suggests a previously unrecognized interaction of the antagonist with vasopressin receptors. The antagonist should be useful in studies of cell proliferation both in vivo and in vitro.  相似文献   

7.
We have used digitonin permeabilization to study the mechanism of bombesin-induced activation of protein kinase C in Swiss 3T3 cells. Protein kinase C-mediated phosphorylations in permeabilized cells were identified using phorbol esters and diacylglycerols. Addition of phorbol 12,13-dibutyrate (PDBu) in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid time- and dose-dependent increase in the phosphorylation of an Mr 80,000 cellular protein (maximum stimulation = 12.6 +/- 1.6-fold after 1 min, EC50 = 27 nM). 1-oleoyl-2-acetylglycerol substituted for PDBu in stimulating the phosphorylation of Mr 80,000 protein (EC50 = 13 microM). Bombesin also caused a striking increase in the phosphorylation of Mr 80,000 protein with a time course similar to that observed with PDBu. This phosphorylation was mimicked by mammalian bombesin-like peptides and blocked by the bombesin antagonists [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P and [Leu13 psi (CH2NH)Leu14]bombesin. Down-regulation of protein kinase C in intact cells by prolonged exposure to PDBu prevented Mr 80,000 protein phosphorylation upon subsequent bombesin addition in digitonin-permeabilized cells. Comigration on one- and two-dimensional gel electrophoresis and phosphopeptide mapping confirmed that the Mr 80,000 protein phosphorylated in permeabilized cells was indistinguishable from the Mr 80,000 protein which is the major protein kinase C substrate in intact cells. The GDP analogue guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) caused a 70% inhibition of the bombesin-induced phosphorylation of Mr 80,000 protein but had no effect on the phosphorylation induced by PDBu. Bombesin stimulated Mr 80,000 protein phosphorylation in permeabilized cells in a dose-dependent manner (EC50 = 4 nM), and GDP beta S shifted the bombesin dose response curve to higher bombesin concentrations (EC50 = 14 nM). These results demonstrate for the first time a growth factor receptor-mediated activation of protein kinase C in permeabilized cells and provide functional evidence for the involvement of a G protein in the transmembrane signaling pathway that mediates the stimulation of protein kinase C by bombesin in Swiss 3T3 cells.  相似文献   

8.
Using the patch-clamp technique (cell-attached patches), we found that bombesin, a Ca-mobilizing peptide mitogen, activates large-conductance Cl channels in Swiss 3T3 fibroblasts. The channel activation required a lag period of about 50 s and was equally observed whether bombesin was applied to the patch-pipette or to the bath. A23187 (10(-6)M) in the bath induced the similar currents with almost identical current-voltage relationship as bombesin: their slope conductances were 292 +/- 15 (bombesin) and 318 +/- 42 (A23187) pS. In inside-out patches, the induced channels were selective to Cl over gluconate (11:1). These observations strongly suggest that in Swiss 3T3 fibroblasts bombesin activates the Cl channels through a mechanism involving an increase in the intracellular free Ca concentration.  相似文献   

9.
The experiments presented here were designed to examine the contribution of p125 focal adhesion kinase (p125FAK) tyrosine phosphorylation to the activation of the mitogen-activated protein kinase cascade induced by bombesin, lysophosphatidic acid (LPA), and platelet-derived growth factor (PDGF) in Swiss 3T3 cells. We found that tyrosine phosphorylation of p125FAK in response to these growth factors is completely abolished in cells treated with cytochalasin D or in cells that were suspended in serum-free medium for 30 min. In marked contrast, the activation of p42mapk by these factors was independent of the integrity of the actin cytoskeleton and of the interaction of the cells with the extracellular matrix. The protein kinase C inhibitor GF 109203X and down-regulation of protein kinase C by prolonged pretreatment of cells with phorbol esters blocked bombesin-stimulated activation of p42mapk, p90rsk, and MAPK kinase-1 but did not prevent bombesin-induced tyrosine phosphorylation of p125FAK. Furthermore, LPA-induced p42mapk activation involved a pertussis toxin-sensitive guanylate nucleotide-binding protein, whereas tyrosine phosphorylation of p125FAK in response to LPA was not prevented by pretreatment with pertussis toxin. Finally, PDGF induced maximum p42mapk activation at concentrations (30 ng/ml) that failed to induce tyrosine phosphorylation of p125FAK. Thus, our results demonstrate that p42mapk activation in response to bombesin, LPA, and PDGF can be dissociated from p125FAK tyrosine phosphorylation in Swiss 3T3 cells.  相似文献   

10.
We have examined the effect of bradykinin (BK) and other peptide mediators with related cellular actions on tyrosine phosphorylation in confluent Swiss 3T3 fibroblast cells using an anti-phosphotyrosine antibody. Immunoblots of extracts from cells stimulated with BK showed a major heterogeneous band centered at Mr 120,000. Three phosphorylated protein species were present within this band. The lower of these three phosphoproteins was occasionally present under basal conditions. The detection of this group of phosphoproteins by the antibody was prevented by coincubation with an excess of phosphotyrosine but not with an excess of phosphoserine or phosphothreonine. The BK-promoted increase in phosphorylation was rapid and transient with the peak response apparent following BK exposure for 1 min. The response was dose-dependent with half-maximal effect occurring at 10-30 nM BK. The antagonist Arg0, Hyp3, Thi5,8, D-Phe7-BK completely inhibited the response indicating that BK was acting via a B2 kinin receptor. Bombesin, at 0.1 microM, stimulated an increase in phosphorylation of the 120-kDa group of proteins with the same efficacy as 0.1 microM BK. On the other hand, 1 microM vasopressin was considerably less efficaceous than either of the former agonists. Short-term preexposure to 0.1 microM 12-O-tetradecanoyl-phorbol-13-acetate (1 min), a protein kinase C stimulator, or 30 microM H7 (15 min), a protein kinase C inhibitor, had no significant effect either on the basal or BK-promoted increase in tyrosine phosphorylation of these proteins. BK also stimulated inositol phosphate formation in these cells. Genistein, a tyrosine kinase inhibitor, inhibited BK stimulation of tyrosine phosphorylation. In addition, genistein partially inhibited BK stimulation of inositol phosphate formation. These results show that an increase in tyrosine phosphorylation of a 120-kDa group of proteins is an early protein kinase C-independent cellular signal elicited by both bradykinin and bombesin.  相似文献   

11.
Bombesin and its mammalian counterpart gastrin releasing peptide (GRP) are potent mitogens for Swiss 3T3 cells in which distinct high affinity receptors have been identified. We developed here a probe for specific ligand affinity chromatography by coupling biotin to [lys3]bombesin. The resulting biotinylated [lys3]bombesin (BLB) retained biological activity as judged by inhibition of [125I]GRP binding to intact cells and membrane preparations and stimulation of rapid Ca2+ mobilization and DNA synthesis in intact cells. Using this ligand and magnetised beads coated with streptavidin, we extracted differentially a single protein from detergent-solubilized Swiss 3T3 membranes in a BLB-dependent manner. Visualization was achieved either after autoradiograph of metabolically labelled proteins with [35S]methionine or by silver staining of larger preparations. In other experiments, elution of BLB-receptor complexes bound to streptavidin beads was carried out at neutral pH and the eluted fraction was reconstituted into phospholipid vesicles. This procedure revealed [125I]GRP binding activity that exhibited saturability, specificity and a 1946-fold increase in specific activity.  相似文献   

12.
The results presented here demonstrate that bradykinin, acting through a B2 subtype receptor, induces a unique pattern of early signals in quiescent Swiss 3T3 cells. Bradykinin caused a rapid mobilization of calcium from internal stores, as judged by measurements of intracellular Ca2+ concentration in fura-2-loaded cells and by 45Ca2+ efflux from radiolabeled cells. Analysis of phosphoproteins from 32P-labeled Swiss 3T3 cells by one- and two-dimensional gel electrophoresis revealed that bradykinin stimulated transient phosphorylation of an acidic cellular protein migrating with an apparent Mr = 80,000 (termed 80K), identified as a major and specific substrate of protein kinase C. Down-regulation of protein kinase C by pretreatment with phorbol 12,13-dibutyrate (PDBu) completely abolished the increase in 80K phosphorylation. In contrast to the sustained effect induced by bombesin, vasopressin, or PDBu, the stimulation of 80K phosphorylation by bradykinin reached a maximum after 1 min of incubation, and then it rapidly decreased to almost basal levels. Furthermore, bradykinin did not induce protein kinase C-mediated events such as inhibition of 125I-epidermal growth factor binding or enhancement of cAMP accumulation. Bombesin and vasopressin elicited both responses in parallel cultures. Bradykinin induced rapid accumulation of total inositol phosphates in cells labeled with myo-[3H]inositol. In contrast to bombesin and vasopressin which stimulated a linear increase in inositol phosphate accumulation over a 10-min period, the effect of bradykinin reached a plateau after 2.5 min of incubation with no further increase up to 10 min. The results demonstrate that the early signaling events triggered by bradykinin can be distinguished from those elicited by bombesin and vasopressin in Swiss 3T3 cells.  相似文献   

13.
Pasteurella multocida toxin, either native or recombinant (rPMT), is an extremely effective mitogen for Swiss 3T3 cells and acts at picomolar concentrations (Rozengurt, E., Higgins, T. E., Chanter, N., Lax, A. J., and Staddon, J. M. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 123-127). Here, we show that similar concentrations of rPMT markedly stimulated the phosphorylation of an acidic 80-kDa protein in [32P]Pi-labeled Swiss 3T3 cells. Co-migration on one- and two-dimensional gels and phosphopeptide analysis indicated that this phosphoprotein was indistinguishable from 80K, a known protein kinase C substrate. In parallel cultures, the stimulation of 80K phosphorylation by rPMT (5-10-fold) was comparable to that induced by bombesin or phorbol dibutyrate (PBt2). However, the increase in phosphorylation by rPMT occurred after a pronounced lag period (1-3 h, depending upon the concentration of rPMT) in contrast to the relatively immediate stimulation by PBt2 or bombesin. Early, but not late, addition of either PMT antiserum or the lysosomotrophic agent methylamine selectively inhibited 80K phosphorylation in response to rPMT. 80K phosphorylation persisted after removal of free toxin and was not inhibited by cycloheximide. It appears that rPMT enters the cells via an endocytotic pathway to initiate and perpetuate events leading to 80K phosphorylation. rPMT, like PBt2, also stimulated the phosphorylation of 87-kDa and 33-kDa proteins in Swiss 3T3 cells. Phosphorylation of the 80K and 87-kDa proteins by rPMT or PBt2 were greatly attenuated in cells depleted of protein kinase C. In contrast, phosphorylation of the 33-kDa protein by rPMT, but not by PBt2, persisted in the absence of protein kinase C. rPMT, like bombesin, caused a translocation of protein kinase C to the cellular particulate fraction. The toxin enhanced the cellular content of diacylglycerol. rPMT also caused a time- and dose-dependent decrease in the binding of 125I-epidermal growth factor to its receptor which was blocked by methylamine and dependent only in part upon the presence of protein kinase C. We conclude that rPMT stimulates protein kinase C-dependent and -independent protein phosphorylation in Swiss 3T3 cells.  相似文献   

14.
McDoom I  Ma X  Kirabo A  Lee KY  Ostrov DA  Sayeski PP 《Biochemistry》2008,47(32):8326-8334
Jak2 is a 130 kDa tyrosine kinase that is important in a number of cellular signaling pathways. Its function is intrinsically regulated by the phosphorylation of a handful of its 49 tyrosines. Here, we report that tyrosine 972 (Y972) is a novel site of Jak2 phosphorylation and, hence, autoregulation. Specifically, we found that Y972 is phosphorylated and confirmed that this residue resides on the surface of the protein. Using expression plasmids that expressed either wild-type Jak2 or a full-length Jak2 cDNA containing a single Y972F substitution mutation, we investigated the consequences of losing Y972 phosphorylation on Jak2 function. We determined that the loss of Y972 phosphorylation significantly reduced the levels of both Jak2 total tyrosine phosphorylation and phosphorylation of Y1007/Y1008. Additionally, Y972 phosphorylation was shown to be important for maximal kinase function. Interestingly, in response to classical cytokine activation, the Jak2 Y972F mutant exhibited a moderately impaired level of activation when compared to the wild-type protein. However, when Jak2 was activated via a GPCR ligand, the ability of the Y972F mutant to be activated was completely lost, therefore suggesting a differential role of Y972 in Jak2 activation. Finally, we found that phosphorylation of Y972 enhances Jak2 kinase function via a mechanism that appears to stabilize the active conformation of the protein. Collectively, our results suggest that Y972 is a novel site of Jak2 phosphorylation and plays an important differential role in ligand-dependent Jak2 activation via a mechanism that involves stabilization of the Jak2 active conformation.  相似文献   

15.
When intracellular free Ca2+ concentration [( Ca2+]i) was monitored in fura2-loaded Swiss 3T3 cells, endothelin increased [Ca2+]i in a dose-dependent manner; after the addition of endothelin, an initial transient peak was observed immediately and was followed by a sustained increase in [Ca2+]i lasting at least 5 min. 45Ca2+ efflux and influx experiments in endothelin-stimulated Swiss 3T3 cells revealed that the change in [Ca2+]i could be explained by a dual mechanism; an initial transient peak induced mainly by the release of Ca2+ from intracellular stores and the sustained increase by an influx of extracellular Ca2+. Cellular generation of inositol 1,4,5-trisphosphate and cyclic AMP were not induced by endothelin, suggesting that other cellular mediators with the capacity to release Ca2+ from intracellular stores play a significant role in the signal transduction pathway of endothelin in Swiss 3T3 cells.  相似文献   

16.
An expression cloning method which allows direct isolation of cDNAs encoding substrates for tyrosine kinases was applied to the study of the epidermal growth factor (EGF) receptor (EGFR) signaling pathway. A previously undescribed cDNA was isolated and designated eps15. The structural features of the predicted eps15 gene product allow its subdivision into three domains. Domain I contains signatures of a regulatory domain, including a candidate tyrosine phosphorylation site and EF-hand-type calcium-binding domains. Domain II presents the characteristic heptad repeats of coiled-coil rod-like proteins, and domain III displays a repeated aspartic acid-proline-phenylalanine motif similar to a consensus sequence of several methylases. Antibodies specific for the eps15 gene product recognize two proteins: a major species of 142 kDa and a minor component of 155 kDa, both of which are phosphorylated on tyrosine following EGFR activation by EGF in vivo. EGFR is also able to directly phosphorylate the eps15 product in vitro. In addition, phosphorylation of the eps15 gene product in vivo is relatively receptor specific, since the erbB-2 kinase phosphorylates it very inefficiently. Finally, overexpression of eps15 is sufficient to transform NIH 3T3 cells, thus suggesting that the eps15 gene product is involved in the regulation of mitogenic signals.  相似文献   

17.
When Swiss 3T3 fibroblasts are treated with a combination of IGF-I2 and bombesin at mitogenic concentrations, in vivo phosphorylation of some nuclear proteins occurs within 45-90 min. Among these proteins, histone H1 and a 0.75 M PCA soluble polypeptide with an apparent Mr of 21,000, as revealed by electrophoretic analysis, are phosphorylated in vitro by protein kinase C in isolated nuclei purified from 3T3 cells treated for 90 min with IGF-I and bombesin. Since these phosphorylative events follow the earlier changes, recently demonstrated, in nuclear polyphosphoinositide metabolism induced by the same mitogen combination, it seems possible that these two phenomena are related to each other and trigger the synthetic machinery responsible for replicating DNA.  相似文献   

18.
Bombesin-like neuropeptides, including mammalian gastrin-releasing peptide (GRP), are potent mitogens for Swiss 3T3 cells. In this study, we have characterized the bombesin receptor in membrane preparations from these cells. Addition of Mg2+ during cell homogenization was essential to preserve 125I-GRP binding activity in the resulting membrane preparation. The effect of Mg2+ was concentration dependent, with a maximum at 5 mM. Specific binding of 125I-GRP was saturable; Scatchard analysis indicated a single class of high-affinity sites of Kd = (2.1 +/- 0.3) x 10(-10) M at 15 degrees C and Kd = (1.9 +/- 0.4) x 10(-10) M at 37 degrees C, and a maximum binding capacity of 580 +/- 50 fmol/mg of protein (15 degrees C) or 604 +/- 40 fmol/mg of protein (37 degrees C). The kinetically derived dissociation constant was 1.5 x 10(-10) M. 125I-GRP binding was inhibited in a concentration-dependent manner by various peptides containing the highly conserved C-terminal heptapeptide of the bombesin family, including bombesin, GRP, neuromedin B and the 8-14 fragment of bombesin. In contrast, a variety of structurally unrelated mitogens and neuropeptides had no effect. The cross-linking agent ethyleneglycolbis(succinimidylsuccinate) covalently linked 125I-GRP to a single Mr 75 000-85 000 protein in membrane preparations of 3T3 cells. Affinity labelling of this molecule was specific and dependent on the presence of Mg2+ during membrane preparation. Finally, the non-hydrolysable GTP analogue guanosine-5'-[gamma-thio]triphosphate (GTP[S]) caused a concentration-dependent inhibition of 125I-GRP binding and cross-linking to 3T3 cell membranes [concentration giving half-maximal inhibition (IC50) approximately 0.2 microM]. The inhibitory effect was specific (GMP, ATP or ATP[S] had no effect at 10 microM) and was due to an increase in Kd from (1.7 +/- 0.2) x 10(-10) M to (4.3 +/- 0.6) x 10(-10) M in the presence of 10 microM-GTP[S]. This modulation of ligand affinity and cross-linking implies that the bombesin receptors that mediate mitogenesis in Swiss 3T3 cells are coupled to a guanine-nucleotide-binding-protein signal-transduction pathway.  相似文献   

19.
Gab-1 (Grb2-associated binder-1), which appears to play a central role in cellular growth response, transformation, and apoptosis, is a member of the insulin receptor substrate (IRS) family. IRS proteins act downstream in the signaling pathways of different receptor tyrosine kinases, including the insulin receptor (IR). In this paper, we characterize the phosphorylation of recombinant human Gab-1 (hGab-1) by IR in vitro. Kinetic phosphorylation data revealed that hGab-1 is a high affinity substrate for the IR (K(M): 12.0 microM for native IR vs 23.3 microM for recombinant IR). To elucidate the IR-specific phosphorylation pattern of hGab-1, we used phosphopeptide mapping by two-dimensional HPLC analysis. Phosphorylated tyrosine residues were subsequently identified by sequencing the separated phosphopeptides by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation. Our results demonstrate that hGab-1 was phosphorylated by IR at eight tyrosine residues (Y242, Y285, Y373, Y447, Y472, Y619, Y657, and Y689). Seventy-five percent of the identified radioactivity was incorporated into tyrosine residues Y447, Y472, and Y619 exhibiting features (NYVPM motif) of potential binding sites for the regulatory subunit (p85) of phosphatidylinositol (PI)-3 kinase. Accordingly, pull down assays with human HepG2 cell lysates showed that IR-specific phosphorylation of wild-type hGab-1 strongly enhanced PI-3 kinase binding. This is still the case when a single tyrosine residue in the NYVPM motif was mutated to phenylalanine. In contrast, phosphorylation-dependent binding of PI-3 kinase was completely abolished by changing a second tyrosine residue in a NYVPM motif independent from its location. Recently, we identified a similar cohort of tyrosine phosphorylation sites for the epidermal growth factor receptor (EGFR) with a predominant phosphorylation of tyrosine residue Y657 and binding of Syp [Lehr, S. et al. (1999) Biochemistry 38, 151-159]. These differences in the phosphorylation pattern of hGab-1 may contribute to signaling specificity by different tyrosine kinase receptors engaging distinct SH2 signaling molecules.  相似文献   

20.
We have studied the effect of the potent mitogen bombesin on the expression of c-fos and c-myc genes in quiescent mouse fibroblasts. We have demonstrated that bombesin rapidly induces a transient expression of c-fos mRNA followed by a more protracted elevation in c-myc mRNA levels. The intensity of the induction of expression of both proto-oncogenes depended on the dose of bombesin used. Prolonged treatment of the cells with TPA, which causes a selective decrease in protein kinase C activity, partially inhibited the induction of c-fos and c-myc gene expression by bombesin, similar to what has been observed with PDGF. However, a dramatic inhibition of the mitogenic response to bombesin--but not to PDGF--was found in TPA-treated cells. In contrast, TPA-treated cells showed an increased response to EGF with regard to proto-oncogene expression. The role of protein kinase C and Ca2+-dependent pathways in proto-oncogene induction by bombesin is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号