首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1. Measurements were made of the activities of the enzymes of the pentose phosphate pathway concerned in both the oxidative (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and the non-oxidative (ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase) reactions of this pathway, together with hexokinase and phosphoglucose isomerase, in adipose tissue in a variety of nutritional and hormonal conditions. 2. Starvation for 2 days caused a significant decrease in the activities of all the enzymes of the pentose phosphate pathway, with the exception of glucose 6-phosphate dehydrogenase, when expressed as activity/2 fat-pads; only the activities of ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase were significantly decreased on the basis of activity/mg. of protein. Re-feeding with a high-carbohydrate or high-fat diet for 3 days restored the activity of all the enzymes of the pentose phosphate pathway to the range of the control values, with the exception of transketolase, which showed a marked ;overshoot' in rats re-fed with carbohydrate. Starvation for 3 days caused a marked decrease in the activities of glucose 6-phosphate dehydrogenase and transketolase. 3. On the basis of activity/two fat-pads, alloxan-diabetes caused a marked decrease, to about half the control value, in the activities of all the enzymes concerned in the pentose phosphate pathway, transketolase showing the smallest decrease; hexokinase and phosphoglucose isomerase activities were also decreased. Treatment with insulin for 3 and 7 days raised the activities to normal or supranormal values, transketolase showing the most marked ;overshoot' effect. On the basis of activity/mg. of protein the activity of none of the enzymes was significantly decreased in alloxan-diabetes; transketolase and transaldolase activities were raised above the control values. With insulin treatment for 3 or 7 days the activities of all the enzymes were significantly increased, except that of ribulose 5-phosphate epimerase at the shorter time-interval. Glucagon treatment did not alter any of the enzyme activities expressed on either basis. 4. Thyroidectomy caused a decrease of 30-40% in the activities of enzymes of the pentose phosphate pathway, except for transketolase activity, which fell to 50% of the control value. Little change occurred in adipose-tissue weight or protein content. 5. Adrenalectomy caused a decrease of 40% in the activity of glucose 6-phosphate dehydrogenase and of 20-30% in the activities of the remaining enzymes of the pentose phosphate pathway; hexokinase activity was also decreased. Treatment with cortisone for 3 days did not significantly raise the activity from that found in adrenalectomized rats. Treatment of normal rats with high doses of cortisone had no significant effect on the activities of the enzymes of the pentose phosphate pathway in adipose tissue. 6. The changes in enzyme activities are discussed in relation to: (a) the concept of constant-proportion groups of enzymes; (b) the known changes in the flux of glucose through alternative metabolic pathways; (c) the pattern of change found in liver with similar hormonal and dietary conditions.  相似文献   

2.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

3.
1. Optimum conditions were established for determining the activities of the NADP(+)-linked enzymes, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase, in mosquito tissues. 2. The activity of each dehydrogenase was determined in samples of mosquitoes of different ages throughout the life-span. The specific-activity curves attained maximal values in the pupal or early adult period. From these maxima an 81% decrease in glucose 6-phosphate-dehydrogenase and 67% decrease in 6-phosphogluconate-dehydrogenase activities occurred after the tenth day of adult life; a 77% decrease in isocitrate-dehydrogenase activity occurred before the fifth day. 3. The activity differences were found in different body regions as well as in whole organisms. 4. Starvation of the larva or adult did not result in decreases in enzyme activity. 5. These findings support the hypothesis that the activities of enzymes that form NADPH are related to the biosynthetic activity, for the enzyme activities increased during the period of cellular growth and decreased during the aging period.  相似文献   

4.
The levels of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase, and cyclic phosphodiesterase activities were examined in growing and starving plasmodia of Physarum polycephalum. The activities of lactate dehydrogenase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase decreased whereas that of cyclic phosphodiesterase increased. The change in activity of lactate dehydrogenase was the result of the variation of the activity of a single enzyme quite similar to the lactate dehydrogenases of higher animals.  相似文献   

5.
The compositions of intracellular pentose phosphate pathway enzymes have been examined in mutants of Pachysolen tannophilus NRRL Y-2460 which possessed enhanced D-xylose fermentation rates. The levels of oxidoreductive enzymes involved in converting D-xylose to D-xylulose via xylitol were 1.5–14.7-fold higher in mutants than in the parent. These enzymes were still under inductive control by D-xylose in the mutants. The D-xylose reductase activity (EC 1.1.1.21) which catalyses the conversion of D-xylose to xylitol was supported with either NADPH or NADH as coenzyme in all the mutant strains. Other enzyme specific activities that generally increased were: xylitol dehydrogenase (EC 1.1.1.9), 1.2–1.6-fold; glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 1.9–2.6-fold; D-xylulose-5-phosphate phosphoketolase (EC 4.1.2.9), 1.2–2.6-fold; and alcohol dehydrogenase (EC 1.1.1.1), 1.5–2.7-fold. The increase of enzymatic activities, 5.3–10.3-fold, occurring in D-xylulokinase (EC 2.7.1.17), suggested a pivotal role for this enzyme in utilization of D-xylose by these mutants. The best ethanol-producing mutant showed the highest ratio of NADH- to NADPH-linked D-xylose reductase activity and high levels of all other pentose phosphate pathway enzymes assayed.  相似文献   

6.
1. The incorporation of [U-(14)C]glucose into several lipid components of lung and liver slices, and the activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ;malic' enzyme (EC 1.1.1.40) and NADP-isocitrate dehydrogenase (EC 1.1.1.42) of the cell cytosol were examined in normal, starved and re-fed rats. 2. Lipogenesis and the activities of these enzymes in liver were decreased markedly in rats starved for 72h. Re-feeding starved rats on a fat-free diet for 72h resulted in the well documented hyperlipogenic response in liver, particularly in its ability to convert glucose into neutral lipid, and increased activities of glucose 6-phosphate dehydrogenase, ;malic' enzyme and 6-phosphogluconate dehydrogenase to values approx. 700, 470 and 250% of controls respectively. 3. Approx. 70% of the total label in lung lipids was present in the phospholipid fraction. Hydrolysis of lung phospholipids revealed that lipogenesis from glucose was considerable, with approx. 40% of the total phospholipid radioactivity present in the fatty acid fraction. 4. Incorporation of glucose into total lung lipids was decreased by approx. 40% in lung slices of starved rats and was returned to control values on re-feeding. Although phospholipid synthesis from glucose was decreased in lung slices of starved rats, the decrease proportionally was greater for the fatty acid fraction (approx. 50%) as compared with the glycerol fraction (approx. 25%). 5. The activities of lung glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and NADP-isocitrate dehydrogenase were not affected by the dietary alterations. ;Malic' enzyme activity was not detected in lung cytosol preparations. 6. The results are discussed in relation to the surface-active lining layer (surfactant) of the lung.  相似文献   

7.
In Drosophila virilis salivary glands the in vitro activities of enzymes involved in the glucosamine pathway were examined during the third larval instar and in the prepupa. While glutamine-fructose-6-phosphate aminotransferase (EC 5.3.1.19) becomes inactive at the time of puparium formation, glucosamine-6-phosphate isomerase (EC 5.3.1.10) and glucosamine-6-phosphate N-acetyltransferase (EC 2.3.1.3) show maximal activities in the prepupal gland. The activity of UDP-N-acetylglucosamine pyrophosphorylase (EC 2.7.7.23) may also decrease prior to puparium formation. Incubation of larval and prepupal glands in medium containing [3H]glucose + [14C]-uridine or [14C]glucosamine and subsequent separation of intermediates of the glucosamine pathway by chromatographic procedures reveal that the capacity of the glands to incorporate the isotopes into these intermediates decreases significantly at the time of puparium formation. The results suggest that in D. virilis salivary glands the formation of aminosugars is mainly controlled by the activities of the two enzymes glutamine-fructose-6-phosphate aminotransferase and UDP-N-acetylglucosamine pyrophosphorylase.  相似文献   

8.
Glucose 6-phosphate, fructose 6-phosphate, fructose 1, 6-diphosphate, and triose phosphates, and the enzymes phosphofructokinase, aldolase, and glucose 6-phosphate dehydrogenase were extracted from banana fruit (Musa cavendishii, Lambert var. Valery) at the (a) preclimacteric, (b) climacteric rise, (c) climacteric peak, and (d) postclimacteric stages of ripening. The level of fructose 1, 6-diphosphate increased 20-fold whereas the concentration of other intermediates changed no more than 2.5-fold between stages a and c. For these same extracts, phosphofructokinase activity increased 2.5-fold whereas the activity of glucose 6-phosphate dehydrogenase and aldolase changed only fractionally. Substrate saturation studies (fructose 6-phosphate) of phosphofructokinase activity showed a decrease in the [S]0.5 from 5.6 to 1.7 mM betwen stages a and c. The enzyme from both sources seems to be regulated by a negative cooperative effect with the control being more stringent in the enzyme from stage a. The difference in enzyme activity is consistent with the increase in respiratory activity between the two stages.  相似文献   

9.
Cellobiose metabolism was studied in Alkaliflexus imshenetskii, a haloalkaliphilic hydrolytic bacterium capable of utilizing certain polymers of plant origin, as well as mono- and disaccharides. The major products of cellobiose fermentation by the bacterium were succinate and acetate, and formate was a minor product. Cellobiose could be split into glucose molecules by both β-glucosidase (hydrolytic pathway) and phosphorylase (phosphorolytic pathway); the activity of the former enzyme was two orders of magnitude higher (3600 nmol/(min mg) versus 36 nmol/(min mg)). In cell extracts of the bacterium, high activities of the Embden-Meyerhof-Parnas pathway enzymes—hexokinase, glucose-phosphate isomerase, and phosphofructokinase—were revealed, as well as the activities of glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and key enzymes of the Entner-Doudoroff pathway—6-phospho-gluconate dehydratase and 2-keto-3-deoxy-6-phospho-gluconate aldolase. Neither the activity of the key enzyme of the hexose-mono-phosphate pathway, 6-phospho-gluconate dehydrogenase, nor the activities of the key enzymes of the modified Entner-Doudoroff pathway, glucose dehydrogenase and 2-keto-3-deoxy-gluconate kinase, were revealed.  相似文献   

10.
The subcellular distribution of NADP+ and NAD+-dependent glucose-6-phosphate and galactose-6-phosphate dehydrogenases were studied in rat liver, heart, brain, and chick brain. Only liver particulate fractions oxidized glucose-6-phosphate and galactose-6-phosphate with either NADP+ or NAD+ as cofactor. While all of the tissues examined had NADP+-dependent glucose-6-phosphate dehydrogenase activity, only rat liver and rat brain soluble fractions had NADP+-dependent galactose-6-phosphate dehydrogenase activity. Rat liver microsomal and rat brain soluble galactose-6-phosphate dehydrogenase activities were kinetically different (Km's 0.5 mm and 10 mm, respectively, for galactose-6-phosphate), although their reaction products were both 6-phosphogalactonate. Rat brain subcellular fractions did not oxidize 6-phosphogalactonate with either NADP+ or NAD+ cofactors but phosphatase activities hydrolyzing 6-phosphogalactonate, galactose-6-phosphate and galactose-1-phosphate were found in crude brain homogenates. In addition, galactose-6-phosphate and 6-phosphogalactonate were tested as inhibitors of various enzymes, with largely negative results, except that 6-phosphogalactonate was a competitive inhibitor (Ki = 0.5 mM) of rat brain 6-phosphogluconate dehydrogenase.  相似文献   

11.
Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.  相似文献   

12.
The activity of the enzymes hexokinase and glucose 6-phosphate dehydrogenase and the level of catecholamines were measured in isolated rat Red Blood Cells (RBC) during cellular aging. The results clearly showed a linear decline in the two enzyme profiles with corresponding increase in age of RBC. A decrease of 75-85% in the activities were found in the oldest cell fractions as compared to the youngest. The levels of glycosylated haemoglobin and catecholamines were found to increase with aging. A correlation can probably be established between the enzyme activities, the levels of glycosylated haemoglobulin and catecholamines during aging.  相似文献   

13.
Summary Enzymes of the CDP-diglyceride pathway of phospholipid synthesis, CDP-diacylglycerol synthetase, CDP-diacylglycerol: glycerol 3-phosphate phosphatidyl-transferase and enzymes of phosphatidylserine formation were initially of relatively high specific activities in aleurone cells of wheat and declined upon imbibition. Enzyme activity of phosphatidylinositol synthesis was not detected in dry grains but was present upon imbibition. CDP-diacylglycerol: glycerol 3-phosphate phosphatidyltransferase shifted during imbibition from 85% of the activity in the supernatant of aleurone layers from dry seeds to 98% associated with large particle fractions after 36 hours of imbibition. Phosphatidylserine formation shifted from a dominant location in the 1,500 x g fraction in the dry seed to a predominantly mitochondrial location after 36 hours of imbibition. The subcellular distribution of CDP-diacylglycerol synthetase did not change appreciably upon imbibition from that of the dry seed, 75 to 80% of the activity was found in the supernatant. Only CDP-diacylglycerol: glycerol 3-phosphate phosphatidyltransferase showed increased specific activity late in the imbibition period. GA3 accelerated the decrease of already declining activities of the CDP-diglyceride enzymes and the changes in their patterns of distribution, augmented the activities of the phosphatidylinositol synthesizing enzyme, and both accelerated and augmented the increase in the activity of the enzyme of phosphatidylglycerol synthesis which occurred late in imbibition.Committee on Institutional Cooperation Travelling Scholar from the University of Chicago.  相似文献   

14.
The activities of the hexose monophosphate pathway enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were measured at autopsy in control and Alzheimer's disease brains. Enzyme activities did not vary between different areas of brain and were unaltered by age. In Alzheimer's disease, the activities of both enzymes were increased, the glucose-6-phosphate dehydrogenase activity being almost double the activity of normal controls. We propose that this increased enzyme activity is a response to elevated brain peroxide metabolism.  相似文献   

15.
1. Pancreatic islets from several mammalian species were investigated for hydrolytic activity towards glucose 6-phosphate. Both the total phosphatase activity towards this substrate and the proportion cleaving glucose 6-phosphate in preference to β-glycerophosphate varied widely between species. In pancreatic-islet homogenates prepared from mice and guinea pigs there was a higher rate of liberation of Pi at pH6·7 from glucose 6-phosphate than from β-glycerophosphate. In these two species cortisone treatment enhanced the enzyme activity towards glucose 6-phosphate but not that towards β-glycerophosphate. Simultaneous injections of ethionine or puromycin blocked this stimulating effect of cortisone. 2. With whole homogenates of mouse pancreatic islets, inverse plots of the relationship between glucose 6-phosphate concentration and enzyme activity suggested the simultaneous action of two enzymes with different Km values. After fractionation of islets from obese–hyperglycaemic mice by differential centrifugation, one of these enzymes could be shown to be localized in the microsome fraction. It had Km for glucose 6-phosphate about 0·5mm and optimum pH6·7. It split glucose 6-phosphate in preference to β-glycerophosphate, glucose 1-phosphate, fructose 6-phosphate and fructose 1,6-diphosphate. Incubation of the microsomes at pH5·0 and 37° for 15min. decreased the enzyme activity by about 80%. Glucose was a potent inhibitor, the type of inhibition being neither strictly competitive nor non-competitive. It is suggested that the results indicate the presence of glucose 6-phosphatase in mammalian endocrine pancreas, and that this enzyme may play a role in the metabolic regulation of release of insulin.  相似文献   

16.
After various permeabilization procedures, plant cells obtained from suspension cultures of Catharanthus roseus are permeable to enzyme substrates which cannot enter the intact cell. Five enzymes of the primary metabolism, hexokinase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, malic enzyme, and citrate dehydrogenase, are studied with special emphasis on the two-enzyme system hexokinase/glucose-6-phosphate dehydrogenase. It is found that permeabilized cells immobilized in agarose retain their enzymatic activities far longer on storage than nonimmobilized cells. Whereas cells permeabilized by various methods show different initial enzymatic activity, the subsequent decrease of activity with time is at the same relative rate. Optimal initial activity is found with dimethyl sulfoxide-treated plant cells. As an enzyme of the secondary metabolism, we choose cathenamice reductase forming ajmalicine alkaloids from cathenamine. It is found that in dimethyl sulfoxide-treated cells the enzyme activity remains intact and that the addition of the coenzyme required in this step, NADPH, considerably increases the yield of product formed. Also, excretion into the medium is enhanced in both these immobilized and permeabilized systems.  相似文献   

17.
The activities of 6 enzymes involved in carbohydrate metabolism were determined quantitatively in preovulatory oocytes by cytochemical means per individual cell as well as biochemically in cell homogenates. Oocytes were incorporated in a polyacrylamide matrix for appropriate enzyme cytochemical staining. This incorporation preserves the morphology of the cells very well, and the enzymes keep their activity for a considerable period of time. This method could also be used to demonstrate more than one enzyme activity in the same cell. The results obtained by cytochemical means appeared to correlate very well with the biochemical data (P less than 0.005). Glucose 6-phosphate dehydrogenase, the key-enzyme in the pentose phosphate pathway, had very high activity in these preovulatory oocytes, but 6-phosphogluconate dehydrogenase activity was only about 2% of that of glucose 6-phosphate dehydrogenase. The activities of lactate dehydrogenase and to a lesser extent glucose phosphate isomerase and D-glyceraldehyde-3-phosphate dehydrogenase also appeared to be very high, while hexokinase showed a very low activity.  相似文献   

18.
The aim of this work was to investigate how light regulates the activity of phosphoenolpyruvate carboxylase in vivo in C4 plants. The properties of phosphoenolpyruvate carboxylase were investigated in extracts which were rapidly prepared (in less than 30 seconds) from darkened and illuminated leaves of Zea mays. Illumination resulted in a significant decrease in the S0.5(phosphoenolpyruvate) but there was no change in Vmax. The form of the enzyme from illuminated leaves was less sensitive to malate inhibition than was the form from darkened leaves. At low concentrations of phosphoenolpyruvate, the activity of the enzyme was strongly stimulated by glucose-6-phosphate, fructose-6-phosphate, triose-phosphate, alanine, serine, and glycine and was inhibited by organic acids. The enzyme was assayed in mixtures of metabolites at concentrations believed to be present in the mesophyll cytosol in the light and in the dark. It displayed low activity in a simulated `dark' cytosol and high activity in a simulated `light' cytosol, but activities were different for the enzyme from darkened compared to illuminated leaves.  相似文献   

19.
The activities of insulin receptor and the enzymes hexokinase (EC 2.7.1.1) and NADP-dependent malic enzyme (EC1.1.1.40), glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and isocitrate dehydrogenase (EC 1.1.1.42) were measured in rat choroid plexus in alloxan induced diabetes. A significant decrease was observed in the activities of all the enzymes except isocitrate dehydrogenase and also the choroid plexus insulin receptor activity was decreased. A reversal of the efect was observed with insulin administration to diabetic rats. It may be concluded that the enzymes of choroid plexus together with insulin receptor are directly controlled by-the concentration of insulin.  相似文献   

20.
1. The activities of the enzymes of the urea cycle were measured in rat liver after feeding with a diet containing ethionine for 2 weeks. This treatment resulted in a decrease in the activity of ornithine transcarbamoylase, which fell to half the control value, while arginase increased by about 40%. The remaining enzymes of the urea cycle were unchanged at this time of treatment. These results are discussed in relation to the known effects of ethionine on nucleic acid synthesis. 2. The activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were measured in rat liver after feeding with a diet containing ethionine for 2 or 5 weeks. At the shorter time-period glucose 6-phosphate-dehydrogenase activity was more than doubled but 6-phosphogluconate-dehydrogenase activity remained unchanged. 3. The results are compared with similar measurements made after feeding with diets containing 4-dimethylamino-3'-methylazobenzene for 2 weeks. Striking similarities were found in the pattern of change in the enzyme activities of each of the pathways in the two treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号