首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
The ability of leukocytes to self-regulate adhesion during transendothelial and extravascular migration is fundamental to the performance of immune surveillance in complex extracellular matrices. Leukocyte adhesion is regulated through the modulation of integrin receptors such as alpha(v)beta(3). In this study, we examined the activation of alpha(v)beta(3) resulting from attachment to vitronectin or fibronectin. In K562 cells stably expressing transfected alpha(v)beta(3), adhesion to vitronectin required tyrosine phosphorylation of the beta(3) subunit and activation of phosphoinositide 3-kinase and protein kinase C. In contrast, adhesion to fibronectin proceeded without beta(3)-tyrosine phosphorylation or the activities of phosphoinositide 3-kinase or protein kinase C. Firm adhesion to both ligands and actin stress fiber formation required both Syk and Rho activity, suggesting that each ligand employs unique signaling pathways to achieve an active integrin complex, likely merging at a common RhoGEF such as Vav. Distinct signaling by a single integrin species interacting with different ligands permits initiation of additional cellular processes specific to the current task and provides an explanation for what has been described as promiscuous ligand specificity among integrins.  相似文献   

2.
We describe a novel integrin heterodimer on the surface of the human embryonic kidney cell line 293. This receptor is comprised of alpha v and beta 1 subunits, each of which has been previously found in association with other integrin subunits. This alpha v.beta 1 complex was identified as the predominant vitronectin receptor (VnR) on the surface of 293 cells by immunoprecipitation with antibodies raised against the alpha v subunit. Polymerase chain reaction analysis detected mRNAs for alpha v and beta 1 subunits while no evidence was obtained for beta 2, beta 3, or alpha IIb integrin subunit mRNA. Immunoprecipitation of surface-iodinated proteins with antibodies to alpha v gave bands of 150 and 120 kDa. The 120-kDa band reacted with antibodies to beta 1 in immunoblotting experiments. 293 cells adhere to vitronectin, fibronectin, laminin, and collagen IV, while von Willebrand factor and fibrinogen, known ligands of the VnR (alpha v.beta 3), did not support adhesion. A polyclonal antibody directed against both subunits of the VnR (alpha v, beta 3) inhibits attachment of 293 cells to vitronectin but not to other adhesive proteins. A beta 1-specific monoclonal inhibited attachment to fibronectin, laminin, and collagen IV, known ligands of beta 1 integrins, as well as vitronectin. This novel (alpha v. beta 1) VnR thus appears to mediate cell adhesion exclusively to vitronectin, in contrast to previously described VnRs which have multiple ligands.  相似文献   

3.
Carcinoma cells express a novel integrin involved in cell adhesion to vitronectin, but not to fibrinogen or von Willebrand factor, whereas melanoma and endothelial cells express a vitronectin receptor (alpha v beta 3) that promotes cell attachment to all of these matrix components. The integrin responsible for this adhesive phenotype of carcinoma cells is composed of an alpha subunit that is indistinguishable from the alpha v of the vitronectin receptor and a beta subunit (beta x) that is distinct from any known integrin beta subunit. Accordingly, Northern blot analysis identifies an mRNA for alpha v, but not for beta 3 in carcinoma cells. This receptor appears to mediate cell adhesion to vitronectin as well as fibronectin since an antibody directed to its alpha subunit blocked carcinoma cell adhesion to both of these matrix proteins. These results suggest that homologous integrins with identical alpha subunits and structurally distinct beta subunits can account for the functional recognition of different matrixes by two cell types.  相似文献   

4.
Integrins are a complex family of divalent cation-dependent cell adhesion receptors composed of one alpha and one beta subunit noncovalently bound to one another. A subset of integrins contains the alpha v subunit in association with one of several beta subunits (e.g. beta 3, beta 5, beta 1). We have recently identified a novel integrin beta subunit, beta 6, that is present in a number of epithelial cell lines. Using a polyclonal antibody raised against the carboxyl-terminal peptide of beta 6, we have now identified the integrin heterodimer, alpha v beta 6, on the surface of two human carcinoma cell lines. Using affinity chromatography of lysates from the pancreatic carcinoma cell line, FG-2, we demonstrate that alpha v beta 6 binds to fibronectin, but not to vitronectin or collagen I. In contrast, the alpha v beta 5 integrin, which is also expressed on FG-2 cells, binds exclusively to vitronectin. Immobilized collagen I does not interact with alpha v integrins, but binds beta 1-containing integrins. Both alpha v beta 6 and alpha v beta 5 are eluted from their respective immobilized ligands by a hexa-peptide containing the sequence Arg-Gly-Asp (RGD). RGD is highly effective in the presence of Ca2+, somewhat less effective in Mg2+, and virtually inactive in Mn2+. These results suggest that alpha v beta 6 functions as an RGD-dependent fibronectin receptor in FG-2 carcinoma cells. In agreement with this notion, cell adhesion assays show that FG-2 cell attachment to fibronectin is only partially inhibited by anti-beta 1 integrin antibodies, implying that other fibronectin receptors may be involved. Taken together with recent reports on the vitronectin receptor function of alpha v beta 5, our results suggest that the previously described carcinoma cell integrin, alpha v beta x (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), is a mixture of at least two different receptors: alpha v beta 5, mediating adhesion to vitronectin, and alpha v beta 6, mediating adhesion to fibronectin.  相似文献   

5.
Heparin is known to influence the growth, proliferation, and migration of vascular cells, but the precise mechanisms are unknown. We previously demonstrated that unfractionated heparin (UH) binds to the platelet integrin αIIbβ3, and enhances ligand binding. To help define the specificity and site(s) of heparin-integrin interactions, we employed the erythroleukemic K562 cell line, transfected to express specific integrins (αvβ3, αvβ5, and αIIbβ3). By comparing K562 cells expressing a common α subunit (Kαvβ3, Kαvβ5) with cells expressing a common β subunit (Kαvβ3, KαIIbβ3), we observed that heparin differentially modulated integrin-mediated adhesion to vitronectin. UH at 0.5–7.5 μg/ml consistently enhanced the adhesion of β3expressing cells (Kαvβ3,KαIIbβ3). In contrast, UH at 0.5–7.5 μg/ml inhibited Kαvβ5adhesion. Experiments using integrin-blocking antibodies, appropriate control ligands, and nontransfected native K562 cells revealed that heparin's actions were mediated by the specific integrins under study. Preincubation of heparin with Kαvβ3cells enhanced adhesion, while preincubation of heparin with the adhesive substrate (vitronectin) had minimal effect. There was a structural specificity to heparin's effect, in that a low molecular weight heparin and chondroitin sulfate showed significantly less enhancement of adhesion. These findings suggest that heparin's modulation of integrin-ligand interactions occurs through its action on the integrin. The inhibitory or stimulatory effects of heparin depend on the β subunit type, and the potency is dictated by structural characteristics of the glycosaminoglycan.  相似文献   

6.
Some integrin alpha subunits undergo a post-translational cleavage in their extracellular domain. However, the role of this cleavage in integrin function is unclear. Enzymes involved in this maturation belong to the subtilisin-like endoprotease family (convertases). To understand the role of the alpha subunit cleavage in integrin function, we have designed stable transfectants (PDX39P cells) expressing alpha(1)-PDX, a convertase inhibitor. Immunoprecipitation of cell surface proteins from PDX39P showed that alpha(3), alpha(6) and alpha(v) integrins lack endoproteolytic cleavage. We have compared adhesion between PDX39P cells and mock-transfected cells on different extracellular matrix proteins. No difference in adhesion could be observed on laminin-1 and type I collagen, while attachment of PDX39P cells to vitronectin (ligand of the alpha(v)beta(5) integrin) was dramatically reduced. The reduced adhesion of PDX39P cells was not due to changes in integrin affinity as determined by solid-phase receptor assay in a cell-free environment. Intracellular signaling pathways activated by alpha(v) integrin ligation were also affected in PDX39P cells. It thus seems that the absence of endoproteolytic cleavage of alpha(v) integrins has important consequences on signal transduction pathways leading to alterations in integrin function such as cell adhesion.  相似文献   

7.
Glycoprotein IIb-IIIa (alpha IIb beta 3) and the vitronectin receptor (alpha v beta 3), two integrins that share the common beta 3 subunit, have been reported to function as promiscuous receptors for the RGD-containing adhesive proteins fibrinogen, vitronectin, fibronectin, von Willebrand factor, and thrombospondin. The present study was designed to establish a cell system for the expression of either GP IIb-IIIa or the vitronectin receptor in an otherwise identical cellular environment and to compare the adhesive properties of these two integrins with those of native GP IIb-IIIa and the vitronectin receptor constitutively expressed in HEL cells or platelets. M21 human melanoma cells lack GP IIb-IIIa and use the vitronectin receptor to attach to vitronectin, fibrinogen, fibronectin, and von Willebrand factor. To study the functional properties of GP IIb-IIIa in these cells, we transfected GP IIb into M21-L cells, a variant of M21 cells (Cheresh, D.A., and R.C. Spiro. 1987. J. Biol. Chem. 262:17703-17711), which lack the expression of functional alpha v and are therefore unable to attach to vitronectin, fibrinogen, and von Willebrand factor. Transfectants expressing GP IIb were isolated by immunomagnetic beads and surface expression of the GP IIb-IIIa complex was documented by FACS analysis and immunoprecipitation experiments performed with 125I-labeled M21-L/GP IIb cells. Comparative functional studies demonstrated that GP IIb-IIIa expressed in M21-L/GPIIb cells as well as native GP IIb-IIIa constitutively expressed in HEL-5J20 cells (an HEL variant lacking alpha v beta 3) mediated cell attachment to immobilized fibrinogen, but not to vitronectin or von Willebrand factor, whereas the vitronectin receptor expressed in M21 cells and HEL-AD1 cells (an HEL variant expressing alpha v beta 3) mediated cell attachment to fibrinogen, vitronectin, and von Willebrand factor. Similarly, PGl2-treated resting platelets attached to immobilized fibrinogen but not to vitronectin or von Willebrand factor, and this attachment could be inhibited by mAb A2A9 (directed against a functional site on the GP IIb-IIIa complex). However, in contrast to platelets, which adhered to vitronectin and von Willebrand factor after stimulation by thrombin or PMA, activation of the protein kinase C pathway in M21-L/GP IIb or HEL cells did not induce cell adhesion to vitronectin or von Willebrand factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
L-plastin (LPL) is a leukocyte actin binding protein previously implicated in the activation of the integrin alpha(M)beta(2) on polymorphonuclear neutrophils. To determine the role for LPL in integrin activation, K562 cell adhesion to vitronectin via alpha(v)beta(3), a well-studied model for activable integrins, was examined. Cell permeant versions of peptides based on the N-terminal sequence of LPL and the LPL headpiece domain both activated alpha(v)beta(3)-mediated adhesion. In contrast to adhesion induced by treatment with phorbol 12-myristate 13-acetate (PMA), LPL peptide-activated adhesion was independent of integrin beta(3) cytoplasmic domain tyrosines and was not inhibited by cytochalasin D. Also in contrast to PMA, LPL peptides synergized with RGD ligand or Mn(2+) for generation of a conformational change in alpha(v)beta(3) associated with the high affinity state of the integrin, as determined by binding of a ligand-induced binding site antibody. Although LPL and ligand showed synergy for ligand-induced binding site expression when actin depolymerization was inhibited by jasplakinolide, LPL peptide-induced adhesion was inhibited. Thus, both actin depolymerization and ligand-induced integrin conformational change are required for LPL peptide-induced adhesion. We hypothesize that the critical steps of increased integrin diffusion and affinity enhancement may be linked via modulation of the function of the actin binding protein L-plastin.  相似文献   

9.
R R Isberg  J M Leong 《Cell》1990,60(5):861-871
Mammalian cell receptors that promote entry of intracellular bacteria into nonphagocytic cells have not been identified. We show here that multiple members of the integrin superfamily of cell adhesion receptors bind the Y. pseudotuberculosis invasin protein prior to bacterial penetration into mammalian cells. Affinity chromatography of crude detergent extracts demonstrated that integrins containing the subunit structures alpha 3 beta 1, alpha 5 beta 1, and alpha 6 beta 1 bound to immobilized invasin. Furthermore, phospholipid vesicles containing isolated integrin proteins were able to attach to invasin. Specificity for invasin binding to the identified integrin receptors was also demonstrated, as immunoprobing and phospholipid reconstitution studies showed that the alpha 2 beta 1 integrin, beta 2 chain integrins, and vitronectin receptor (alpha v beta 3) were not involved in cellular attachment to invasin.  相似文献   

10.
EC3, a heterodimeric disintegrin (Mr = 14,762) isolated from Echis carinatus venom is a potent antagonist of alpha4 integrins. Two subunits called EC3A and EC3B were isolated from reduced and alkylated EC3 by reverse-phase high performance liquid chromatography. Each subunit contained 67 residues, including 10 cysteines, and displayed a high degree of homology to each other and to other disintegrins. EC3 inhibited adhesion of cells expressing alpha4beta1 and alpha4beta7 integrins to natural ligands vascular cell adhesion molecule 1 (VCAM-1) and mucosal addressin cell adhesion molecule 1 (MadCAM-1) with IC50 = 6-30 nM, adhesion of K562 cells (alpha5beta1) to fibronectin with IC50 = 150 nM, and adhesion of alphaIIbbeta3 Chinese hamster ovary cells to fibrinogen with IC50 = 500 nM; it did not inhibit adhesion of alphavbeta3 Chinese hamster ovary cells to vitronectin. Ethylpyridylethylated EC3B inhibited adhesion of Jurkat cells to immobilized VCAM-1 (IC50 = 6 microM), whereas EC3A was inactive in this system. The MLDG motif appeared to be essential for activity of EC3B. Linear MLDG peptide inhibited the adhesion of Jurkat to VCAM-1 in a dose-dependent manner (IC50 = 4 mM), whereas RGDS peptide was not active at the same concentration. MLDG partially inhibited adhesion of K562 cells to fibronectin (5-10 mM) in contrast to RGDS peptide (IC50 = 3 mM), inhibiting completely at 10 mM.  相似文献   

11.
Most mammalian rotaviruses contain tripeptide amino acid sequences in outer capsid proteins VP4 and VP7 which have been shown to act as ligands for integrins alpha2beta1 and alpha4beta1. Peptides containing these sequences and monoclonal antibodies directed to these integrins block rotavirus infection of cells. Here we report that SA11 rotavirus binding to and infection of K562 cells expressing alpha2beta1 or alpha4beta1 integrins via transfection is increased over virus binding to and infection of cells transfected with alpha3 integrin or parent cells. The increased binding and growth were specifically blocked by a monoclonal antibody to the transfected integrin subunit but not by irrelevant antibodies. In our experiments, integrin activation with phorbol ester did not affect virus binding to cells. However, phorbol ester treatment of K562 parent and transfected cells induced endogenous gene expression of alpha2beta1 integrin, which was detectable by flow cytometry 16 h after treatment and quantitatively correlated with the increased level of SA11 virus growth observed after this time. Virus binding to K562 cells treated with phorbol ester 24 h previously and expressing alpha2beta1 was elevated over binding to control cells and was specifically blocked by the anti-alpha2 monoclonal antibody AK7. Virus growth in alpha4-transfected K562 cells which had also been induced to express alpha2beta1 integrin with phorbol ester occurred at a level approaching that in the permissive MA104 cell line. We therefore have demonstrated that two integrins, alpha2beta1 and alpha4beta1, are capable of acting as cellular receptors for SA11 rotavirus.  相似文献   

12.
The integrins are a family of heterodimeric cell surface receptors for extracellular matrix molecules. An analysis of integrin subunits expressed by a number of cell lines identified a novel heterodimer. The alpha subunit of this integrin was immunologically and electrophoretically indistinguishable from the vitronectin receptor alpha subunit (alpha v) and the beta subunit was indistinguishable from beta 1. Affinity chromatography experiments and cell adhesion assays indicated that this receptor complex is a new fibronectin receptor. Its unexpected subunit composition demonstrates the importance of the beta subunit in determining the ligand specificity of integrins and suggests that the current integrin classification scheme needs revision.  相似文献   

13.
We have recently demonstrated that in breast carcinoma MCF7 cells MT1-MMP processes the alphav, alpha3, and alpha5 integrin precursors generating the respective mature S-S-linked heavy and light alpha-chains. The precursor of alpha2 integrin subunit was found resistant to MT1-MMP proteolysis. The processing of the alphav subunit by MT1-MMP facilitated alphavbeta3-dependent adhesion, activation of FAK signaling pathway, and migration of MCF7 cells on vitronectin. To elucidate further the effects of MT1-MMP on cellular integrins, we examined the functional activity of alpha5beta1 and alpha2beta1 integrins in MCF7 cells expressing MT1-MMP. Either expression of MT1-MMP alone or its coexpression with alphavbeta3 failed to affect the functionality of alpha5beta1 integrin, and adhesion of cells to fibronectin. MT1-MMP, however, profoundly affected the cross-talk involving alphavbeta3 and alpha2beta1 integrins. In MT1-MMP-deficient cells, integrin alphavbeta3 suppressed the functional activity of the collagen-binding alpha2beta1 integrin receptor and diminished cell adhesion to type I collagen. Coexpression of MT1-MMP with integrin alphavbeta3 restored the functionality of alpha2beta1 integrin and, consequently, the ability of MCF7 cells to adhere efficiently to collagen. We conclude that the MT1-MMP-controlled cross-talk between alphavbeta3 and alpha2beta1 integrins supports binding of aggressive, MT1-MMP-, and alphavbeta3 integrin-expressing malignant cells on type I collagen, the most common substratum of the extracellular matrix.  相似文献   

14.
The adhesive interactions of circulating blood cells are tightly regulated, receptor-mediated events. To establish a model for studies on regulation of cell adhesion, we have examined the adhesive properties of the HD11 chick myeloblast cell line. Function-perturbing antibodies were used to show that integrins containing the beta 1 subunit mediate HD11 cell attachment to several distinct extracellular matrix proteins, specifically fibronectin, collagen, vitronectin, and fibrinogen. This is the first evidence that an integrin heterodimer in the beta 1 family functions as a receptor for fibrinogen. While the alpha v beta 1 heterodimer has been shown to function as a vitronectin receptor on some cells, this heterodimer could not be detected on HD11 cells. Instead, results suggest that the beta 1 subunit associates with different, unidentified alpha subunit(s) to form receptors for vitronectin and fibrinogen. Results using function-blocking antibodies also demonstrate that on these cells, additional receptors for vitronectin are formed by alpha v beta 3 and alpha v associated with an unidentified 100-kD beta subunit. The adhesive interactions of HD11 cells with these extracellular matrix ligands were shown to be regulated by lipopolysaccharide treatment, making the HD11 cell line attractive for studies of mechanisms regulating cell adhesion. In contrast to primary macrophage which rapidly exhibit enhanced adhesion to laminin and collagen upon activation, activated HD11 cells exhibited reduced adhesion to most extracellular matrix constituents.  相似文献   

15.
We have purified a novel member of the integrin gene family from placenta that serves as a vitronectin receptor. This integrin is composed of the alpha v subunit and a beta subunit that we designate beta 5. Purification was accomplished by immunodepleting a placental extract of integrin alpha v beta 3, allowing us to purify alpha v beta 5 from the remaining extract by monoclonal antibody affinity chromatography on LM 142-Sepharose, which binds to the alpha v subunit. Purification to homogeneity was subsequently achieved by affinity chromatography on wheat germ lectin-Sepharose. Western blot analysis with antibodies raised against alpha v beta 5 and alpha v beta 3 demonstrated that beta 3 and beta 5 were distinct but confirmed that the alpha subunit of the two integrins were immunologically identical. Similarly, antibodies that bind beta 3 proximal to the ligand-binding site failed to react with beta 5, indicating an architectural difference at the ligand-binding site of these related integrins. This structural difference apparently results in a functional distinction, since purified alpha v beta 3 bound to vitronectin, fibrinogen, von Willebrand factor, and fibronectin, whereas integrin alpha v beta 5 bound preferentially to vitronectin. Finally, we demonstrate by three criteria that beta 5 and beta x, the latter of which was identified in lung carcinoma cells (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), are identical. First, peptide maps of beta x and beta 5 are identical. Secondly, polyclonal antibodies raised against alpha v beta 5 immunoprecipitate both beta 5 and beta x, and finally, the amino-terminal amino acid sequences of beta x and beta 5 are identical.  相似文献   

16.
Integrin-mediated cell adhesion often results in cell spreading and the formation of focal adhesions. We exploited the capacity of recombinant human alpha IIb beta 3 integrin to endow heterologous cells with the ability to adhere and spread on fibrinogen to study the role of integrin cytoplasmic domains in initiation of cell spreading and focal adhesions. The same constructs were also used to analyze the role of the cytoplasmic domains in maintenance of the fidelity of the integrin repertoire at focal adhesions. Truncation mutants of the cytoplasmic domain of alpha IIb did not interfere with the ability of alpha IIb beta 3 to initiate cell spreading and form focal adhesions. Nevertheless, deletion of the alpha IIb cytoplasmic domain allowed indiscriminate recruitment of alpha IIb beta 3 to focal adhesions formed by other integrins. Truncation of the beta 3 subunit cytoplasmic domain abolished cell spreading mediated by alpha IIb beta 3 and also abrogated recruitment of alpha IIb beta 3 to focal adhesions. This truncation also dramatically impaired the ability of alpha IIb beta 3 to mediate the contraction of fibrin gels. In contrast, the beta 3 subunit cytoplasmic truncation did not reduce the fibrinogen binding affinity of alpha IIb beta 3. Thus, the integrin beta 3 subunit cytoplasmic domain is necessary and sufficient for initiation of cell spreading and focal adhesion formation. Further, the beta 3 cytoplasmic domain is required for the transmission of intracellular contractile forces to fibrin gels. The alpha subunit cytoplasmic domain maintains the fidelity of recruitment of the integrins to focal adhesions and thus regulates their repertoire of integrins.  相似文献   

17.
Phosphorylation of vitronectin (Vn) by casein kinase II was previously shown to occur at Thr50 and Thr57 and to augment a major physiological function of vitronectin-cell adhesion and spreading. Here we show that this phosphorylation increases cell adhesion via the alpha(v)beta3 (not via the alpha(v)beta5 integrin), suggesting that alpha(v)beta3 differs from alpha(v)beta5 in its biorecognition profile. Although both the phospho (CK2-PVn) and non-phospho (Vn) analogs of vitronectin (simulated by mutants Vn(T50E,T57E), and Vn(T50A,T57A), respectively) trigger the alpha(v)beta3 as well as the alpha(v)beta5 integrins, and equally activate the ERK pathway, these two forms are different in their activation of the focal adhesion kinase/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) pathway. Specifically, we show (i) that, upon exposure of cells to Vn/CK2-PVn, their PKB activation depends on the availability of the alpha(v)beta3 integrin on their surface; (ii) that upon adhesion of the beta3-transfected cells onto the CK2-PVn, the extent of PKB activation coincides with the enhanced adhesion of these cells, and (iii) that both the PKB activation and the elevation in the adhesion of these cells is PI3K-dependent. The occurrence of a cell surface receptor that specifically distinguishes between a phosphorylated and a non-phosphorylated analog of Vn, together with the fact that it preferentially activates a distinct intra-cellular signaling pathway, suggest that extra-cellular CK2 phosphorylation may play an important role in the regulation of cell adhesion and migration.  相似文献   

18.
Recently, we have shown that membrane type 1 matrix metalloproteinase (MT1-MMP) exhibits integrin convertase activity. Similar to furin-like proprotein convertases, MT1-MMP directly processes a single chain precursor of alpha(v) integrin subunit (pro-alpha(v)) into the heavy and light alpha-chains connected by a disulfide bridge. To evaluate functionality of MT1-MMP-processed integrins, we examined breast carcinoma MCF7 cells co-expressing alpha(v)beta(3) integrin with either the wild type or mutant MT1-MMP in a variety of migration and adhesion tests. Specific inhibitors of proprotein convertases and MMP were employed in our cell system to attenuate the individual pathways of pro-alpha(v) maturation. We present evidence that MT1-MMP cleavage of pro-alpha(v) in the cells did not affect RGD-ligand binding of the resulting alpha(v)beta(3) integrin but enhanced outside-in signal transduction through a focal adhesion kinase pathway. Enhanced tyrosine phosphorylation of focal adhesion kinase in cells co-expressing MT1-MMP and alpha(v)beta(3) integrin contributed to efficient adhesion and, especially, migration of cells on vitronectin, a ligand of alpha(v)beta(3) integrin. These mechanisms underscore the significance of a coordinated interplay between MT1-MMP and alpha(v)beta(3) integrin in tumor cells and identify downstream signaling pathways resulting from their interactions. Regulation of integrin maturation and functionality may be an important role of MT1-MMP in tumor cells.  相似文献   

19.
Tyrosine phosphorylation of beta(3) integrins is a permissive stage in the activation of alpha(IIb)beta(3) and alpha(v)beta(3) in platelets and leukocytes, respectively. In this study we demonstrated direct phosphorylation of beta(3) integrins as a result of interaction with soluble monomeric ligand, and we characterized the differential kinetics of beta(3) phosphorylation as a consequence of alpha subunit pairing. We found that beta(3) phosphorylation is initiated by RGD peptide binding in a dose-dependent and saturable fashion with alpha(IIb)beta(3) becoming phosphorylated and dephosphorylated more rapidly than alpha(v)beta(3). Site mapping of phosphate incorporation reveals significant phosphorylation at Tyr-747 in both beta(3) integrin species with incorporation at Tyr-759 found at significant levels only in alpha(IIb)beta(3). Mutation of cytoplasmic beta(3) tyrosine residues in a transfection model prevents cell adhesion via these integrins. These data demonstrate that recognition of ligand is sufficient to induce beta(3) tyrosine phosphorylation and suggests that this event is regulated by the alpha subunit pairing of beta(3).  相似文献   

20.
Integrin alpha(v)beta(3)-mediated adhesion of hematopoietic cells to vitronectin results in activation of the Rho GTPases. Mutation of beta(3) tyrosine residue 747, previously shown to disrupt cell adhesion, results in sustained activation of Cdc42 and diminished Rac and Rho activity. We investigated the role of the hematopoietically restricted guanine nucleotide exchange factor Vav1 in alpha(v)beta(3)-mediated adhesion. We find that Vav1, a guanine nucleotide exchange factor for Rac and Rho, associates with alpha(v)beta(3) upon cell adhesion to vitronectin and that this association requires beta(3) tyrosine phosphorylation. Expression of exogenous Vav1 demonstrates that Y160F, but not wild type or the Vav1Y174F mutant, inhibits Rac and Rho activation during alpha(v)beta(3)-mediated cell adhesion to vitronectin. Cells expressing Vav1Y160F exhibit a sustained Cdc42 activation similar to nonphosphorylatable beta(3) mutants. In addition, cytoskeletal reorganization and cell adhesion are severely suppressed in Vav1Y160F-transfected cells, and Vav1Y160F fails to associate with beta(3) integrins. Furthermore, Vav1 itself is selectively phosphorylated upon tyrosine 160 after alpha(v)beta(3)-mediated adhesion, and the association between Vav1 and beta(3) occurs in specific response to adhesion to substrate. These studies describe a phosphorylation-dependent association between beta(3) integrin and Vav1 which is essential for cell progression to a Rho-dominant phenotype during cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号