首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The chromatin structure of foreign genes in transgenic tobacco plants was investigated by digestion of nuclei with DNase I and micrococcal nuclease, respectively, followed by restriction and Southern analysis of the digestion products. The results were compared to the differential expression of the different transgenes. Two model systems were used: plants harbouring vector DNA derived from the disarmed vector pGV 3850 and plants harbouring the light-regulated and organ-specifically expressed potato ST-LS1 gene and the cotransferred ncpaline synthase (nos) reporter gene. Our results show that transferred genes are located in DNase l-sensitive domains in all transformants. Slight variations of DNase l-sensitivity of the transferred ST-LS1 constructs in different transformants neither reflected the between-transformant variability of expression nor the organ-specific activity of the transgenes. A deletion event was found responsible for silencing the ST-LS1 gene but not the nos gene in one of the transformants. Whereas no DNase l-hypersensitive sites were found within the 3850-T-DNA and the ST-LS1 gene, one prominent site was mapped to the nos promoter within the ST-LS1 construct in all transformants. Digestion of chromatin harbouring 3850-T-DNA with micrococcal nuclease resulted in a blurred nucleosomal pattern as compared to nucleolar and bulk chromatin, the extent of blurring being independent of the expression of transferred genes. The present results favour the “permissive domain” hypothesis which capitalizes on the chromatin surrounding the integration site as the determining factor for the chromatin structure of incoming alien genes. However, between-transformant variability of expression is not reflected by differential sensitivity to DNase I. Hence, other factors than chromatin structure must be involved in creating “position effects”.  相似文献   

5.
6.
Kgv cells do not constitutively express class I mRNA or protein. Interferon (IFN)-gamma, but not IFN-alpha/beta, induces H-2Dk expression. IFN does not induce H-2Kk expression. We examined constitutive and IFN-inducible class I expression on Kgv cells stably transfected with genomic clones of H-2Kk or H-2Dk and on somatic cell hybrid lines constructed between Kgv cells and constitutively class I-positive cells of a distinguishable H-2 haplotype. Our results suggest that both the lack of constitutive class I expression and the inability of IFN-alpha/beta to induce class I expression on Kgv cells are primarily due to cis-regulatory mechanisms. However, stable introduction of the H-2Dk gene into Kgv cells conferred IFN-gamma inducibility upon the silent endogenous H-2Kk gene. Therefore, the failure of IFN-gamma to induce H-2Kk expression on Kgv cells is due, at least in part, to a trans-regulatory mechanism.  相似文献   

7.
The rearrangement of a variable (V) and a constant (C) gene appears to be a necessary prerequisite for immunoglobulin gene expression. Multiple different rearranged kappa genes were found in several mouse myelomas, although these cells produce only one type of kappa chain [Wilson, R., Miller, J., & Storb, U. (1979) Biochemistry 18, 5013--5021]. It is therefore of interest to understand how only one allele within a lymphoid cell becomes expressed, while the other allele remains nonfunctional ("allelic exclusion"). We have studied the chromatin conformation of kappa genes by making use of the preferential digestion of potentially active genes by DNase I described, for example, for globin genes [Weintraub, H., & Groudine, M. (1976) Science (Washington, D.C.) 193, 848--856]. The DNase I sensitivity of kappa genes in myeloma tumors, in a B cell lymphoma, and in liver was determined by hybridization with DNA on Southern blots. It was found that rearranged C kappa genes are DNase I sensitive in myelomas in which several kappa genes are rearranged, regardless of whether the rearranged genes code for the kappa chains synthesized by the cell. Furthermore, the C kappa gene in germline configuration is also DNase I sensitive in a B cell lymphoma; i.e., it is in the same chromatin state as the rearranged C kappa gene which probably codes for the kappa chains produced by the cell. The altered chromatin state appears to be localized: V kappa genes in germline context are not DNase I sensitive in myeloma or B lymphoma cells while C kappa genes present in a kappa gene cluster on the same chromosomes are sensitive. When rearranged, however, the V kappa genes are as sensitive to DNase I as are rearranged C kappa genes. V lambda and C lambda genes are not DNase I sensitive in kappa myelomas. Thus, commitment to kappa gene expression is apparently correlated with a chromatin conformation which confers increased DNase I sensitivity to the DNA in the vicinity of all C kappa genes in the cell. "Allelic exclusion" does not operate on the level of chromatin conformation which can be detected by altered DNase I sensitivity.  相似文献   

8.
Apoptosis is commonly associated with the catabolism of the genome in the dying cell. The chromatin degradation occurs in essentially two forms: (1) internucleosomal DNA cleavage to generate oligonucleosomal-length fragments (180-200 bp and multiples thereof), and (2) cleavage of higher order chromatin structures to generate approximately 30-50 Kb fragments. To investigate this component of apoptosis and identify the nuclease(s) responsible, we have developed and utilized an in vitro assay that recapitulates the genomic destruction seen during apoptosis in vivo and allows the simultaneous analysis of both forms of DNA degradation from the same sample. Using this assay we evaluated the digestion patterns of several candidate apoptotic nucleases: DNase I, DNase II, and cyclophilin (NUC18) as well as the bacterial enzyme micrococcal nuclease (not thought to be involved in apoptosis). Chromatin degraded by DNase I formed a smear of DNA on conventional static-field agarose gels and approximately amp;30 - 50 Kb DNA fragments on pulsed field gels. In contrast, DNase II, at a physiologically relevant pH, had no effect on the integrity of HeLa chromatin in either analysis. Similar to DNase I, cyclophilin C produced only approximately 30-50 Kb DNA fragments but did not generate internucleosomal fragments. In contrast, micrococcal nuclease generated both oligonucleosomal and approximately 30-50 Kb DNA fragments. Nuclear extracts from glucocorticoid-treated apoptotic thymocytes generated oligonucleosomal DNA fragments and the larger approximately 30-50 Kb DNA fragments, fully recapitulating both types of apoptotic DNA degradation. Previously, differential sensitivity of nucleases to inhibition by Zn2+ was used to argue that two distinct enzymes mediate approximately 30-50 Kb DNA cleavage and internucleosomal DNA degradation. While, the nuclease activity present in thymocyte nuclear extracts was differentially sensitive to inhibition by Zn2+ during short term incubations it was not during prolonged digestions, suggesting that differences in DNA detection are likely to account for previous results. Together our studies show that none of the nucleases commonly associated with apoptosis could fully recapitulate the DNA degradation seen in vivo.  相似文献   

9.
Nuclease sensitivity of active chromatin.   总被引:5,自引:2,他引:3       下载免费PDF全文
The active regions of chicken erythrocyte nuclei were labeled using the standard DNase I directed nick translation reaction. These nuclei were then used to study the characteristics and, in particular, the nuclease sensitivity of active genes. Although DNase I specifically attacks active genes, micrococcal nuclease solubilizes these regions to about the same degree as the total DNA. On the other hand micrococcal nuclease does selectively cut the internucleosomal regions of active genes resulting in the appearance of mononucleosomal fraction which is enriched in active gene DNA. A small percentage of the active chromatin is also released from the nucleus by low speed centrifugation following micrococcal nuclease treatment. The factors which make active genes sensitive to DNase I were shown to reside on individual nucleosomes from these regions. This was established by showing that isolated active mononucleosomes were preferentially sensitive to DNase I digestion. Although the high mobility group proteins are essential for the maintenance of DNase I sensitivity in active regions, these proteins are not necessary for the formation of the conformation which makes these genes preferentially accessible to micrococcal nuclease. The techniques employed in this paper enable one to study the chromatin structure of the entire population of actively expressed genes. Previous studies have elucidated the structure of a few special highly prevalent genes such as ovalbumin and hemoglobin. The results of this paper show that this special conformation is a general feature of all active genes irregardless of the extent of expression.  相似文献   

10.
11.
L Einck  J Fagan  M Bustin 《Biochemistry》1986,25(22):7062-7068
The chromatin structure of cytochrome P-450c and P-450d genes, which in the liver are highly inducible by 3-methylcholanthrene, was studied in normal and carcinogen-treated rats by using a cDNA probe specific for P-450c and a genomic probe that recognizes both genes. Digestion with micrococcal nuclease revealed that the active genes are not present in the typical 200 base pair nucleosomal structure. Gene induction is associated with a rearrangement of the nuclear organization of the genes. By use of indirect end-label hybridization, three DNase I hypersensitive sites were mapped, one in the 5'-terminal region and two in the 3' region of the P-450c gene. Gene induction, by treatment with 3-methylcholanthrene, changes the location of the DNase I site present in the 5' region without affecting the sites present in the 3' region. Rat thymus chromatin does not contain these DNase I hypersensitive sites, suggesting that, in the liver, the chromatin structure is altered so as to allow tissue-specific expression of the P-450c gene. The chromatin structure of the highly inducible P-450c gene is compared to that of the P-450m gene, which is induced to a significantly smaller extent and is constitutively expressed.  相似文献   

12.
13.
L Einck  J Fagan  M Bustin 《Biochemistry》1985,24(19):5269-5275
Plasmids carrying fragments of a cytochrome P-450 gene, inducible by 3-methylcholanthrene, were used to study the chromatin structure of this gene in the liver of normal and carcinogen-treated rats. Digestion with micrococcal nuclease revealed that the gene is not present in the typical 200 base pair nucleosomal structure. By use of indirect end-label hybridization, four DNase I hypersensitive sites were mapped in the 5'-terminal region of the gene. An S1 nuclease sensitive site is located close to a DNase I site. Gene induction by treatment with 3-methylcholanthrene does not result in detectable changes in the DNase I hypersensitive sites. Rat thymus chromatin does not contain DNase I hypersensitive sites in the P-450 gene, suggesting that in the liver the chromatin structure is altered so as to allow tissue-specific expression of the gene. This paper is the first study on the chromatin structure of a gene coding for a member of the cytochrome P-450 family of enzymes. The implications of our results to the understanding of gene regulation of the P-450 genes are discussed.  相似文献   

14.
15.
The globin gene family of Xenopus laevis comprises pairs of closely related genes that are arranged in two clusters, each pair of genes being co-ordinately and stage-specifically expressed. To get information on putative regulatory elements, we compared the DNA sequences and the chromatin conformation 5' to the co-ordinately expressed adult alpha-globin genes. Sequence analysis revealed a relatively conserved region from the cap site up to position -289, and further upstream seven distinct boxes of homology, separated by more diverged sequences or deletions/insertions. The homology boxes comprise 22 to 194 base-pairs showing 78 to 95% homology. Analysis of chromatin conformation showed that DNase I preferentially cuts the upstream region of both genes at similar positions, 5' to the T-A-T-A and the C-C-A-A-T boxes, only in chromatin of adult erythroblasts and erythrocytes, where adult globin genes are expressed, but not in chromatin of adult liver cells or larval erythrocytes, where these genes are silent. This suggests that cell- and stage-specific activation of these genes coincides with specific changes in chromatin conformation within the proximal upstream region. No difference was found in the nucleotide sequence within the DNase I hypersensitive region proximal to the adult alpha 1-globin gene in DNA from embryonic cells, in which this gene is inactive, and adult erythrocytes, expressing this gene.  相似文献   

16.
17.
DNase I was used to probe the molecular organization of the chicken ovalbumin (OV) gene and glyceraldehyde 3-phosphate dehydrogenase (GPD) gene in interphase nuclei and in metaphase chromosomes of cultured chicken lymphoblastoid cells (MSB-1 line). The OV gene was not transcribed in this cell line, whereas the GPD gene was constitutively expressed. The GPD gene was more sensitive to DNase I digestion than the OV gene in both interphase nuclei and metaphase chromosomes, as determined by Southern blotting and liquid hybridization techniques. In addition, we observed DNase I hypersensitive sites around the 5' region of the GPD gene. These hypersensitive sites were not always at the same locations between the interphase nuclei and metaphase chromosomes. Our results suggest that chromatin condensation and decondensation during cell cycle alters nuclease hypersensitive cleavage sites.  相似文献   

18.
19.
In the presence of 3 mM MgCl2 DNase I cleavage of bulk, globin and ovalbumin gene chromatin in chicken erythrocyte nuclei generates fragments which are multiples of a double-nucleosome repeat. However, in addition to the dinucleosomal periodicity beta-globin gene chromatin was fragmented into multiples of a 100 b.p. interval which is characteristic for partially unfolded chromatin. This distinction correlates with higher sensitivity of beta-globin domain to DNase I and DNase II as compared to the inactive ovalbumin gene. At 0.7 mM MgCl2 where these DNases fragment bulk chromatin into series of fragments with a 100 b.p. interval, the difference in digestibility of the investigated genes is dramatically decreased. When chromatin has been decondensed by incubation of nuclei in 10 mM Tris-buffer, DNase II generates a typical nucleosomal repeat, and the differential nuclease sensitivity of the analyzed genes is not observed. The data suggest that higher nuclease sensitivity of potentially active genes is due to irregularities in higher order chromatin structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号