首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical cross-linking was used to study the interaction between non-histone high-mobility-group (HMG)1 and histone H5 in free solution. The presence of acidic C-terminal domain in HMG1 was shown to be a prerequisite for HMG1 binding to histone H5. The objective of this communication is to ascertain whether HMG1 could affect the conformation of DNA associated with a linker histone H5. Complexes of histone H5 with chicken erythrocyte DNA or an alternating purine-pyrimidine polynucleotide poly[d(A-T)] were prepared at different molar ratios H5/DNA. Changes in DNA conformation in the complexes with histone H5 or H5/HMG1 were monitored by circular dichroism (c.d.). Depending on the molar ratio H5/poly[d(A-T)], under conditions limiting the complex aggregation, three distinct types of c.d. spectra were observed. The addition of HMG1 to H5-DNA complexes reduced in all cases the histone H5-induced conformational changes in poly[d(A-T)]. The sensitivity of H5-poly[d(A-T)] complexes to HMG1 was inversely proportional to the amount of H5 in the complex. The effect of HMG1 was not observed upon removal of the acidic C-terminal domain of HMG1.  相似文献   

2.
Zwitterionic, net neutral oligonucleotides containing alternating negatively charged N3'-->P5' phosphoramidate monoester and positively charged phosphoramidate diester groups were synthesized. The ability of zwitterionic phosphoramidates to form complexes with complementary DNA and RNA was evaluated. Stoichiometry and salt dependency of these complexes were determined as a function of the nature of the heterocyclic bases of the zwitterionic compounds. Unlike the melting temperatures of the natural phosphodiester-containing oligomers, the T m of the duplexes formed with the zwitterionic oligothymidylates was salt concentration independent. The thermal stability of these duplexes was much higher with Delta T m values of 20-35 degrees C relatively to phosphodiester counterparts at low salt concentrations. The zwitterionic oligoadenylate formed only 2Py:1Pu triplexes with complementary poly(U) or poly(dT) strands. The thermal stability of these complexes was dependent on salt concentration. Also, the T m values of the complexes formed by the zwitterionic oligoadenylate with poly(U) were 6-41 degrees C higher than for the natural phosphodiester counterpart. Triplexes of this compound with poly(dT) were also more stable with a Delta T m value of 22 degrees C at low salt concentrations. Complexes formed by the zwitterionic oligonucleotides with complementary RNAs were not substrates for RNase H. Surprisingly, the duplex formed by the all anionic alternating N3'-->P5'phosphoramidate-phosphodiester oligothymidylate and poly(A) was a good substrate for RNase H.  相似文献   

3.
F Seela  J Ott    D Franzen 《Nucleic acids research》1982,10(4):1389-1397
Poly(adenylic acids) containing the antibiotic tubercidin (7-deazaadenosine) form double strands with poly(uridylic acid) by Watson-Crick base pairing. The stability of these complexes is enhanced by an increasing adenosine content of the polymers. Whereas poly(tubercidylic acid) can bind only one poly(U) chain, the copolymers of adenylic and tubercidylic acid bind a second strand of poly(U). The melting temperatures imply a triple strand formation in a similar geometry as found for poly(A).2poly(U). The diminished hypochromicity of those complexes suggests semi-Hoogsteen base pairs, caused by the lack of N-7 in the antibiotic. As found for poly(A).poly(U), the double-stranded poly(Tu).poly(U) is not hydrolyzed by nuclease S1. In contrast to the four regular homopolyribonucleotides the single-stranded poly(Tu) is cleaved very rapidly. This may be due to a great flexibility of the polynucleotide chain. Moreover TuMP does not inhibit the enzymic digestion. Both phenomena imply a mechanism for the antibiotic action of tubercidin on the polymer level.  相似文献   

4.
These studies were designed to identify the proteins associated with specific mRNAs. L6 myoblasts contain a unique poly(A)-rich H4 mRNA as well as poly(A)-minus H4 mRNA subspecies. We have characterized the proteins present in both poly(A)-rich and poly(A)-minus histone H4 mRNP complexes following ultraviolet cross-linking in vivo. In addition, the muscle-specific myosin heavy chain (MHC) mRNP complex was characterized in myoblasts. [35S]Methionine-labelled poly(A)-rich and poly(A)-minus RNP complexes were prepared from both the polysomal and free (post-polysomal) RNP compartments. From each fraction the mRNP encoding histone H4 or MHC was purified by hybrid selection to a cloned human histone H4 gene or MHC cDNA. A unique set of 6-16 proteins was found bound to each of the specific mRNP complexes. These proteins were a subset of the total population of either polysomal or free RNP proteins and some proteins appeared common among the different hybrid-selected RNP fractions. The results demonstrate that (a) mRNAs bind a different set of proteins depending upon whether they are present in the polysomal or free mRNP fraction; (b) the presence of poly(A) sequences affects the proteins which bind to H4 mRNA in the free RNP compartment.  相似文献   

5.
The competition between poly(ADP-ribose) and DNA for binding of the histones H1, H3 and H4 was studied, using a membrane filter-binding test. Poly(ADP-ribose) differently affected the interaction between DNA and the individual histones. While poly(ADP-ribose) effectively competed with DNA for binding of histone H4, it equally competed with DNA for binding of histone H3 and only inefficiently competed with DNA for binding of histone H1. Moreover, preformed complexes were correspondingly affected by the addition of competing polynucleotides, thereby also indicating the reversibility of complex formation. The competition capacity of DNA for histone H4 binding did not depend on DNA size. Competition experiments with poly(A) also indicated that poly(ADP-ribose) preferentially affected DNA-histone H4 interaction. The significance of the differing binding properties is discussed with regard to the possible molecular function of poly(ADP-ribose), especially with regard to its potential effect on nucleosome structure.  相似文献   

6.
N R Kallenbach  S D Drost 《Biopolymers》1972,11(8):1613-1620
Apparent second-order rate constants for complex formation between poly (I) and poly (C) and copolymers of C containing non-complementary I or U residues have been determined spectrophotometrically. The rate constants decrease as the concentration of either I or U in the C strands increases–the effect seems insensitive to the species of residue involved, when differences in the thermal stabilities of the poly (I) poly (C,I) and poly (I). poly (C,U) complexes are taken into account. These results suggest that low concentrations of relatively stable defects can alter the apparent kinetic “complexity” of polynucleotides as determined by hybridization methods (C0t analysis).  相似文献   

7.
Methodology was developed for specifically anchoring Escherichia coli 70S ribosomes onto a chemically modified, cysteine-reactive glass surface. Immobilized ribosomes maintain the capability of binding a polyuridylic acid (poly(U)) template, enabling investigation of mechanical properties of individual ribosome-poly(U) complexes using laser tweezers. Streptavidin-coated polystyrene microspheres bound specifically to the biotinylated 3' end of long (up to 10,000 bases) poly(U) strands. A novel optical method was built to control the position of the laser trap along the microscope optical axis at 2 nm resolution, facilitating measurement of the force-extension relationship for poly(U). Some immobilized ribosome-poly(U) complexes supported 100 pN of force applied at the 3' end of the mRNA. Binding of N-acetylated Phe-tRNA(Phe), an analog of the initiator fMet-tRNA(Met), enhanced the population of complexes that could withstand high forces. The persistence length of poly(U) RNA homopolymer, modeled as a worm-like chain, was found to be 0.79 +/- 0.05 nm and the backbone elasticity was 900 +/- 140 pN, similar to values for single-stranded DNA.  相似文献   

8.
Poly(ADP-ribosylated) histones in chromatin replication   总被引:2,自引:0,他引:2  
Poly(ADP-ribosylation) of histones and several other nuclear proteins seem to participate in nuclear processes involving DNA strand breaks like repair, replication, or recombination. This is suggested from the fact that the enzyme poly(ADP-ribose) polymerase responsible for this modification is activated by DNA strand breaks produced in these nuclear processes. In this article I provide three lines of evidence supporting the idea that histone poly(ADP-ribosylation) is involved in chromatin replication. First, cellular lysates from rapidly dividing mouse or human cells in culture synthesize a significant number of oligo- in addition to mono(ADP-ribosylated) histones. Blocking the cells by treatment of cultures with 5 mM butyrate for 24 h or by serum or nutrient depletion results in the synthesis of only mono- but not of oligo(ADP-ribosylated) histones under the same conditions. Thus, the presence of oligo(ADP-ribosylated) histones is related to cell proliferation. Second, cellular lysates or nuclei isolated under mild conditions in the presence of spermine and spermidine and devoid of DNA strand breaks mainly synthesize mono(ADP-ribosylated) histones; introduction of a small number of cuts by DNase I or micrococcal nuclease results in a dramatic increase in the length of poly(ADP-ribose) attached to histones presumably by activation of poly(ADP-ribose) polymerase. Free ends of DNA that could stimulate poly(ADP-ribosylation) of histones are present at the replication fork. Third, putatively acetylated species of histone H4 are more frequently ADP-ribosylated than nonacetylated H4; the number of ADP-ribose groups on histone H4 was found to be equal or exceed by one the number of acetyl groups on this molecule. Since one recognized role of tetraacetylated H4 is its participation in the assembly of new nucleosomes, oligo(ADP-ribosylation) of H4 (and by extension of other histones) may function in new nucleosome formation. Based on these results I propose that poly(ADP-ribosylated) histones are employed for the assembly of histone complexes and their deposition on DNA during replication. Modified histones arise at the replication fork by activation of poly(ADP-ribose) polymerase by unligated Okazaki fragments.  相似文献   

9.
Poly(ADP-ribose) effectively competes with DNA for histone H4 binding   总被引:1,自引:0,他引:1  
The effect of poly(ADP-ribose) on DNA-histone H4 interaction was studied using a nitrocellulose filter binding assay. Poly-(ADP-ribose) was found to form poly(ADP-ribose)-histone H4 complexes at physiological salt concentrations. The homopolymer effectively competed with DNA for histone H4 binding. Poly(ADP-ribose) was also capable of displacing DNA from preformed DNA-histone H4 complexes. Our hypothesis is that poly(ADP-ribose), locally and transiently formed at the site of DNA damage, causes dissociation of DNA from the nucleosome particle or nucleosome unfolding.  相似文献   

10.
We demonstrate that RecA protein can mediate annealing of complementary DNA strands in vitro by at least two different mechanisms. The first annealing mechanism predominates under conditions where RecA protein causes coaggregation of single-stranded DNA (ssDNA) molecules and where RecA-free ssDNA stretches are present on both reaction partners. Under these conditions annealing can take place between locally concentrated protein-free complementary sequences. Other DNA aggregating agents like histone H1 or ethanol stimulate annealing by the same mechanism. The second mechanism of RecA-mediated annealing of complementary DNA strands is best manifested when preformed saturated RecA-ssDNA complexes interact with protein-free ssDNA. In this case, annealing can occur between the ssDNA strand resident in the complex and the ssDNA strand that interacts with the preformed RecA-ssDNA complex. Here, the action of RecA protein reflects its specific recombination promoting mechanism. This mechanism enables DNA molecules resident in the presynaptic RecA-DNA complexes to be exposed for hydrogen bond formation with DNA molecules contacting the presynaptic RecA-DNA filament.  相似文献   

11.
Much progress has been made concerning histone function in the nucleus; however, following their synthesis, how their marking and subcellular trafficking are regulated remains to be explored. To gain an insight into these issues, we focused on soluble histones and analyzed endogenous and tagged H3 histones in parallel. We distinguished six complexes that we could place to account for maturation events occurring on histones H3 and H4 from their synthesis onward. In each complex, a different set of chaperones is involved, and we found specific post-translational modifications. Interestingly, we revealed that histones H3 and H4 are transiently poly(ADP-ribosylated). The impact of these marks in histone metabolism proved to be important as we found that acetylation of lysines 5 and 12 on histone H4 stimulated its nuclear translocation. Furthermore, we showed that, depending on particular histone H3 modifications, the balance in the presence of the different translocation complexes changes. Therefore, our results enabled us to propose a regulatory means of these marks for controlling cytoplasmic/nuclear shuttling and the establishment of early modification patterns.  相似文献   

12.
The enzyme catalyzing the synthesis of poly (adenosine diphosphate-ribose) with an average of eight repetitions of ADP-ribose was purified 10-fold from rat liver nuclei in 15% yield. The enzyme required DNA, histone, MgCl2, and dithiothreitol for activity. DNA could not be replaced by polyanions such as poly (U), poly (A), poly (C), RNA, polyvinyl sulfate, methyl dextran sulfate, or heparin. The enzyme was as active on native DNA as on heat-denatured DNA and on poly [d (A-T)], but less active on poly(dG)·poly(dC) and on acid-soluble oligodeoxyribonucleotide. Whole histones of calf thymus or of rat liver, lysine-rich histone of calf thymus, and arginine-rich histone were similarly effective in stimulating the reaction. Casein, bovine serum albumin, cytochrome c, and spermidine did not replace lysine-rich histone. CaCl2 or MnCl2 was as effective for the reaction as MgCl2. Dithiothreitol could be replaced by 2-mercaptoethanol and by glutathione. Polyanions, such as RNA, poly(U), poly(C), poly(A), and polyvinyl sulfate inhibited the enzyme activity. The molecular weight of the enzyme was determined to be 78,000 by sucrose density gradient centrifugation.  相似文献   

13.
Ellen TP  van Holde KE 《Biochemistry》2004,43(24):7867-7872
The interaction of linker histone H1 with both linear and superhelical double-stranded DNA has been investigated at low ionic strengths. Gel mobility retardation experiments demonstrate strikingly different behavior for the two forms of DNA. First, the experiments strongly suggest that linker histone binds to superhelical DNA in a negatively cooperative mode. In contrast, binding of linker histone to linear DNA under the conditions employed here shows no cooperativity. Second, binding of linker histone to linear DNA results in aggregation of histone-DNA complexes, even at very low levels of input histone H1. Because H1 has been shown to interact as a monomer, this aggregation is evidence of the divalent character of the linker histone, for without H1's ability to bind to two duplex strands of DNA, aggregation could not occur. Although aggregation can be made to occur with superhelical DNA, it can do so only at near-saturation levels of input histone H1. Finally, in direct competition, linker histone binds to superhelical DNA to the complete exclusion of linear DNA, indicating that the linker histone's function is related to the crossover structures that differentiate superhelical DNA from linear DNA. We develop a model that explains the observed behavior of binding of linker histone to superhelical DNA that is consistent with both the divalent character of the linker histone and the negative cooperativity by which linker histone and superhelical DNA interact.  相似文献   

14.
Poly(ADP-ribosylation) of histones H1, H5 and non-histone chromosomal high-mobility-group proteins HMG 1, 2, 14 and 17 from chicken erythrocytes by purified calf thymus poly(ADP-ribose) polymerase was studied using acid/urea/Triton gel electrophoresis and autoradiography. With histone H1, besides ADP-ribosylated H1 supporting short chains of polymer, the appearance of H1 'dimer' was observed and this reaction was dependent on NAD concentration and incubation time. In addition, highly modified and/or aggregated species of histone H1 were observed. Histone H5 was slightly ADP-ribosylated at low NAD concentrations. At higher NAD concentrations or after longer incubations the formation of H5 'dimer' and of more modified forms of H5 could be observed. HMG 1 and HMG 2 were found to be ADP-ribosylated, the reaction being dependent on NAD concentration and time. Here again some discrete intermediates appeared. HMG 14 and HMG 17 were only slightly ADP-ribosylated under our experimental conditions. These results indicate that the purified DNA-independent poly(ADP-ribose) polymerase can catalyse the formation of H1 'dimer' as in nuclei and nucleosomes and that H5 and HMG proteins can also be ADP-ribosylated and produce well-defined higher complexes. These modifications of nuclear proteins may provide a means of localized conformational changes of the chromatin structure in vivo.  相似文献   

15.
The pattern of nucleosomal histones poly(ADP-ribosyl)ation is changed under conditions which affect the poly(ADP-ribosyl)ation state of the enzyme. At low NAD concentrations the enzyme can poly(ADP-ribosyl)ate histones H1 and H1, H2A, A2A, and H2B. However at NAD concentrations above 10 microM the enzyme preferentially poly(ADP-ribosyl)ates histone H1 to a hyper ADP-ribosylated form. Furthermore we have observed hyper ADP-ribosylation of histone H2B at NAD concentrations of 10 microM suggesting that histone H2B can undergo the same type of ADP-ribosylation pattern as histone H1. Also at higher NAD concentrations an elongation of the polymer attached to the enzyme and other nuclear proteins takes place.  相似文献   

16.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

17.
The processes of melting and reassociation of double-stranded RNA in dimethylsulfoxide were studied. The addition of a small amount of LiCl results in great results in great reduction of Tm (temperature of melting), whereas the NaCl produces the opposite effect. It is suggested, that LiCl coordinates the molecules of H2O, reducing their activity, and consequently destabilises dsRNA. Mild conditions for melting and reassociation of RNA can be created. It was found that under optimal conditions for dsRNA melting, the degree of strand separation depends on the overall concentration of RNA, irrespective of the type of RNA added to the dsRNA preparation. Reassociation of dsRNA of EMC virus proceeds much faster than that of dsRNA of a related poliovirus. Addition of poly(C) to an annealing mixture slows down the rate of reassociation of EMC dsRNA, producing no effect on the poliovirus dsRNA reassociation. It is suggested that the presence of large poly(C) and poly(G) tracts in the complementary strands of the RNA determines its anomalous fast reassociation. Upon incubation of completely separated strands of EMC dsRNA in a water solution with high ionic strength partially double-stranded aggregates are formed. The formation of aggregates is prevented by addition of poly(A), which indicates that they are produced by "zippening" of a molecule starting with poly(A):poly(U) region. The significance of homopolymeric regions for stability of dsRNA of the EMC virus as well as their role in viral multiplication are discussed.  相似文献   

18.
Poly(ADP-ribose) polymerase is a chromosomal enzyme that is completely dependent on added DNA for activity. The ability of DNA molecules to activate the polymerase appears to be enhanced by the presence of DNA damage. In the present study, we used SV 40 DNA and SV 40 minichromosomes to determine whether different types of DNA damage and different chromosomal components affect stimulation of polymerase activity. Treatment of SV 40 minichromosomes with agents or conditions that induced single-strand breaks increased their ability to stimulate poly(ADP-ribose) synthesis. This stimulation was enhanced by addition of histone H1 at a ratio of 1 microgram of histone H1 to 1 microgram of DNA. Higher ratios of histone H1 to DNA suppressed the ability of SV 40 minichromosomes containing single-strand breaks to stimulate enzyme activity. Treatment of SV 40 minichromosomes or SV 40 DNA with HaeIII restriction endonuclease to produce double-strand breaks markedly stimulated poly(ADP-ribose) polymerase activity. The stimulation of poly(ADP-ribose) polymerase by double-strand breaks occurred in the absence of histone H1 and was further enhanced by adding histone H1 up to ratios of 2 to 1 relative to DNA. At higher ratios of histone H1 to DNA, the presence of the histone continued to enhance the poly(ADP-ribose) synthesis stimulated by double-strand breaks.  相似文献   

19.
Poly(ADP-ribose) is synthesized and degraded by poly(ADP-ribose) polymerase and glycohydrolase, respectively. We have reconstituted in vitro two turnover systems containing these two enzymes. We have measured the kinetics of NAD consumption and polymer accumulation during turnover. The combined action of the two enzymes (i.e., turnover) generates a steady state of polymer quantity. The glycohydrolase determines the time and the level at which this steady state of total polymer is reached. A major observation is that the size and calculated density of polymer bound to the total polymerase molecules is tightly regulated by the rate of polymer turnover. On the polymerase, an increase in the rate of polymer turnover does not affect the mean polymer size, but reduces the polymer density on the enzyme (i.e., the number of polymer chains per polymerase molecule). In the absence of glycohydrolase and at low histone H1 concentration (less than 1.5 micrograms/ml), poly(ADP-ribose) polymerase preferentially automodifies itself instead of modifying histone H1. In contrast, under turnover conditions, oligomer accumulation on histone H1 was greatly increased, with almost 40% of all the polymer present on H1 after 5 min of turnover. Although turnover conditions were necessary for histone H1 labelling, there was no difference between the fast and the slow turnover systems as concerns the proportion of histone H1 labelling, although the mean polymer size on histone H1 was decreased with increasing turnover rate. Due to its small size, polymer is not degraded by the glycohydrolase and accumulates on histone H1 during turnover. These data suggest that the glycohydrolase modulates the level of poly(ADP-ribosyl)action of different proteins in two ways; by degrading shorter polymers at a slower rate and probably by competing with the polymerase for polymer.  相似文献   

20.
In metazoans, cell-cycle-dependent histones are produced from poly(A)-lacking mRNAs. The 3′ end of histone mRNAs is formed by an endonucleolytic cleavage of longer precursors between a conserved stem–loop structure and a purine-rich histone downstream element (HDE). The cleavage requires at least two trans-acting factors: the stem–loop binding protein (SLBP), which binds to the stem–loop and the U7 snRNP, which anchors to histone pre-mRNAs by annealing to the HDE. Using RNA structure-probing techniques, we determined the secondary structure of the 3′-untranslated region (3′-UTR) of mouse histone pre-mRNAs H4–12, H1t and H2a–614. Surprisingly, the HDE is embedded in hairpin structures and is therefore not easily accessible for U7 snRNP anchoring. Probing of the 3′-UTR in complex with SLBP revealed structural rearrangements leading to an overall opening of the structure especially at the level of the HDE. Electrophoretic mobility shift assays demonstrated that the SLBP-induced opening of HDE actually facilitates U7 snRNA anchoring on the histone H4–12 pre-mRNAs 3′ end. These results suggest that initial binding of the SLBP functions in making the HDE more accessible for U7 snRNA anchoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号